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ABSTRACT

A radar is basically a measuring instrument for extracting informa-
tion from a received signal voltage., The amount of information that can be
extracted is ultimately limited by the noise background. The concept of
measurable information has been quantitatively developed in the literature
and provides a means by which substantial insight may be acquired into the

generalized nature of optimum radar processing,

The presented work exhibits an interpretation of radar information
consistent with intuitive views of radar processing as well as with formal
definitions of information theory, The approach has led to the following

specific results,

(2) A unified description of the mechanism by which both detection
capability and parameter estimation are optimized simultaneously. A two-
dimensional matched filter is described in which the ideal radar processing
is seen to consist of a two~-dimensional "involution® in which the signal's
input energy area in the time-frequency plane is compressed into an interior

area,

(b) The two-dimensional compression of Item (a) can be increased,
in both the time and frequency domains by a factor of Jp , where p is two
times the signal-to-noise energy ratio, by employing an envelope detector

having the characteristic of Io(x), the modified Bessel function,

{c) The definition of a "distributional® type of physical entropy
that is associated with parameter information, For a given a priori sur-
veillance window within which we search for a target, it is cshown that there
is a minimum threshold energy ET required to make a meaningful measure-
ment. Furthermore, the total amount of range and Doppler parameter in-
formation obtained is bounded such that the information is always less than
the threshold entropy ET/:7 , where J is the equivalent noise temperature
of the radar. It is also shown that the minimum signal-to-noise energy ratio
required to detect the presence of a signal imvaersed in one noise mode
(independent sample) is equal to a defined "absolute® information entropy

of the noise sample, which is calculated to be unity,

(d) An equivalence between the amplitude detection threshold com-
monly employed in radar and the energy threshold employed in physics for

setting the "reliability" of a measurement,
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(e) The development of a new detection procedure + :d vpon a
defined ®detection information® and the employment of the Ne¢  u:." -’earson
procedure in the threshold-croseing rate domain rather than in tne standard

amplitude domain,

(f) A new representation of band-limited or time-limited Gaussian
noise based upon the identification of independent noise "modes® in the time-
frequency plane, with each mode having an energy described by the Boltzmann
factor of statistical mechanics and occupying an area of one logon in the time-

frequency plane,

(g) An explicit formula for parameter information in terms of a
multiple-target echo ambiguity function,

(h) By defining a distributional type of information in a gas problem
involving thermodynamic entropy, a formula is derived which is directly
analogous to Shannon' s formula for the information communicated through

a noisy channel,

PO S S T S P




11
1,2

2.1
2,2

3.1

3.2

3.3

T EIUIB T TR

B S it

[

TABLE OF CONTENTS .

L INTRODUCTION

Summary

Historical Background

2, TIME -BANDWIDTH-LIMITED GAUSSIAN NOISE

Conventional Methods of Analysis
Two-Dimensional Representation

2,2,1 Noise Occupancy in the Time-Frequency
Plane

2,2.2  Application of the Boltzmann Factor

2.2.3 Karhunen-Loéve Expansion in Two
Dimensions

3. RADAR SIGNAL PROCESSING

Pulsed~-CW Radar

3, L1 Measurement of Range Only
3.1,2 Measurement of Noppler Only

Radars with General Transmitted Waveforms

3.2,1  Chirp Radars for the Measurement of
Range Only

3.2.2 Simultaneous Measurement of Range and
Doppler Shift

3,2.2.1 General Two-Dimensional Compression
{Maximum-«~Likelihood Receiver)

3.2.,2.1,1 Linear Detection
3.2.2.1.2 Nonlinear Detection

3.2.2,2 Doppler-Channel Implementation

3.2.2,3 Range-Channel Implementation

3.2.2,4 Overall Two-Dimensional Information
Relation of Results to Statistical Mechanics

3.3.1 Distributional Information Defined in Terms
of Physical Entropy

3.3.2 Comparison with Shannon'! s Formula for the
Information Capacity of a N2isy Channel

18
18

18
21

23

23

23
23
23
31
33
35
37
42

42




.
i B NP

a8 Bl 3 SR By T SN N S T T

3.3.3 A Signal-Detection Criterion Relating Input
Physical Entropy to "Absolute® Information
Entropy of Noise Background

OPTIMIZATION OF AMPLITUDE THRESHOLD LEVEL

4.1 Motivation for Ainplitude-Threshold Optimization
4,2 Detection Model

4.3 A Detection Procedure Based Upon Threshold-Crossing

Rate
PARAMETER INFORMATION

5.1 Basic Formula
5.2 Reduced Single-Target Formula
5.3 Examples

5.3.1 No-Signal Case
5,3,2 No A Priori Uncertainty
5.3.3 The Case of High Signal-To-Noise Ratio

APPLICATION OF RESULTS

6.1 Description of an Existing Advanced FM Radar System

6.2 Design of an Optimum Radar System

6.2.1 Resolution Improvement
6.2.2 TImprovement in Detection Capability by
Employment of the Detection-Information
Procedure
CONCLUSION

7.1 General Results
7.2 Further Work

BIBLIOGRAPHY

APPENDIX A. Review of Complex Notation
APPENDIX B, Entropy Increase Due to Mixing

arse w mmwam e AR oRwmam Y K e i AAr Wemseerar

Page

49
52

52

-

53

56
60

60
63
65

65
66
68

74

74
78

78

84
91

91
91

93

97
98

=T N

i, P




R e | e

TABLE OF FIGURES AND GRAPHS

Figure

2.1 Two Types of Time-Bandwidth-ULimited White Gaussian
Noise

2.2 Block Diagram for Observing Bandpass-Limited Noise
Consisting of TB Modes

2,3 Bandpass-Limited White Gaussian Noise Prior to
Envelope Detection

3.1 Block Diagram of Basic Pulsed-CW Radar for the
Measurement of Range Only

3.2 Block Diagram of Basic Pulsed-CW Radar for the
Measurement of Doppler Only

3.3 Chirp-Type Radar for the Measurement of Range Only

3.4 Analytical Radar Model for the Measurement of Range
and Doppler Using an Arbitrary Waveform

3.5 Typical Correlation Surface

3.6 Representation of the Two-Dimensional Matched-Filter
Operation as an Involution Process

3.7 Operating Characteristic of Bessel-Function Envelope
Detector

3.8 Division of Surveillance Area into Doppler Channels
or Range Channels

3.9 Thermally Insulated Container Filled with Ideal Gas

4,1 Detection Model

4,2 Probability Density Functions for Indicator Pulse Rate

6.1 Simplified Block Diagram of an Advanced FM Radar

6.2 Relative Positions of Frequency Ramps

6.3 Block Diagram of Nonlinear Rzceiver (Single Channel)

6.4 Comparison of Linear and Nonlinear Resolutions

6.5 Detection Information vs, Threshold Level for Various
Values of S/N Ratio

6.6 Comparison of Detection Probabilities for Detection-

Information Procedure and Neyman-Pearson Amplitude
Procedure,

Page

10

14
15
19

22
24

25
29

30
34

36
44
54
58
75
76
80
82

85

90

s S R

o
e

[ QRES 2 A




.

BT, SNSRI a7 s

S L e T

l. INTRODUCTION

L1 Summary

A radar is basically a measuring instrument for extracting information from a
received signal voltage. The amount of information that can be extracted about such

signal parameters as range delay and Doppler frequency is ultimately limited by the

noige background, Radar theory has shown that both detection capability and parameter-
estimation accuracy are explicitly dependent upon the ratio of total received signal
energy to noise power spectral density (for white Gaussian stationary noise), Further-
more, both detection capability and parameter estimation are optimized, within the

ciass of linear filters, by the so-called "matched filter® .

The concept of measurable information has been quantitatively developed in the

literature and provides a means by which substantial insight may be acquired concern-

et e bt e e P S b ke ANt

ing the generalized nature of optimum radar processing., It is apparent that a radar
obtains information only upon reception of a quantity of energy. Moreover, the amount
of information acquired depends upon the degree of concentration (in time and frequency)

of the input energy as it is introduced. The degree of concentration, in turn, is meas-

urable in terms of the increase in physical entropy experienced by the radar instrument,
We find that a greater amount of input information implies a smaller increase in entropy.
’ In fact, a negative form of entropy (negentropy) can be defined which implies the avail-
ability of thermal worck due to mixing or diffusion, This negentropy is received when-
ever information is obtained, If a non-dissipative process is assumed in which input
energy is conserved, it is concluded that availability of thermal work is created when-
ever information is received. We have therefore arrived at a principle of a cybernetic
nature, namely, that information (of the type considered) is interpretable as a physical

E3
entity rather than only an arbitrary "measure®, {Section 3.3) ,

If the input energy is not well concentrated in time or frequency (or both) as it
enters the radar, maximum information may still be extracted by using a matched
filter, The role of the matched filter is interpretable as the reverse of diffusion, That
is, it compreasses the area occupied by the inpat signal energy in the time-frequency
plane (with signal time-bandwidth products greater than unity), For example, suppose
we are using a linear-FM (chirp) signal with a relatively wice bandwidth of B cps. The
matched filter has a comparable bandwidth, At the matched filter output, the signal

energy is compressed into a time interval of 1/B seconds which is also the duration of

[CURSURRVI SRR

%* Section references in parentheses refer to sections of this dissertation where the
subject is primarily developed,
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. an output independent noise sample, Let us assume that the input pulse has a duration

of P scconds and the a priori uncertainty in our knowledge of range delay extends over
a range window of T seconds, At the input to the matched filter, the received range

information is measurable as log2 T/P bits, whereas it is log, TB bits at the matched
filter output, We now have .

log, TB > log, T/P , (L.1)

since PB > 1 for signals with time-bandwidth products greater than unity, Therefore,

the matched filter may be said to have intreased the measured information (and negen- E
tropy). (Section 3, 2).

Physical entropy is the ratio of un erergy increment to absolute temperature

and, in radar, it is shown that this is synonymous with signal-to-noise energy ratio.

Thus, the analysis of optimum radar processing in terms of information theory leads

to significant relations among various quantities such as informaticn entropy, physical

[rECRENIN

entropy and signal-to-noise energy ratio, Furthermore, it becomes evident that radar
detection capability and (range-Doppler) parameter estimation are necessarily opti-
mized by the same mechanism which involves a compression of the signal' s energy

area in the time-frequency plane. (Section 3,2),

The presented work exhibitsan interpretation of radar information consistent

IR a8 AR ARG (AR

with intuitive views of radar processing as well as with the formal definitions of infor-

mation theory, Moreover, the additional insight provided by the approach has lead to
the following specific results:

(a) A unified description of the mechanism by which both detection capability

AR Ryl e T

and parameter estimation are optimized simultaneously. A two-dimensional matched-

filter concept is described in which the ideal radar processing is seen to consist of a

E TN

two-dimensional "involution® in which the signal' s input energy area in the time-fre-

quency plane is compressed into an interior area. The two-dimensional matched filter

© e

is found to be a time-frequency gate which overlaps the signal' s input energy area in
the time -frequency plane. (Section 3,2).

(b) The two-dimensional compression of Item (a) can be increased, in both

the time and frequency domains by a factor ofdp , where

_ 2E _ 2 x signal energy (L 2)
p= No ~ Tnoise powe: spectral density ' '

by employing an envelope detector having the characteristic of the modified Bessel

function (of first kind and zero order) Io(x). (Section 3. 2).

(c) The definition of a "distributional" type of physical entropy that is

2 i e i (R TPIN
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associated with parameter information, For a given a privri surveillance window q
within which we search for a traget, it is shown that there is a minimum threshold g
energy ET required to make a meaningful measurement, Furthermore, the total amount A

of range and Doppler parameter information obtained is bounded such that the information

is always less than the threshold entropy ET/g, where J is the equivalent noise tem- g
perature of the radar., It is also shown that the minimum signal-‘o-noise energy ratio
required to detect the presence of a signal immersed in one noise mode (indcpendent

N sample) is equal to a defined "absolute™ information entropy of the noise sample,

which is calculated to be unity, (Sections 3.1, 3.2, 3,3).

(d) An equivalence between the amplitude detection threshold commonly
employed in radar and the energy threshold employed in physics for setting the

Breliability" of a measurement, (Section 3,1),

{e) The development of a new detection procedure based upon threshold-

crossing rate, In this method, the amplitude threshold is set to maximize "detection
information®, Using this optimum amplitude threshold, a specific false-alarm thresh-
hold-crossing rate is thereby established and accepted as normal, A data-rate thres-
hold is then set for a selected probability of a "false-alarm type of mistake" (or Type-l
error in statistical estimation theory), If the threshold-crossing rate should exceed
the established data-rate threshold, a target is judged to be present, Thus the statis-
tical Neyman-Pearson approach is applied to the (threshold-crossing) rate variate
rather than to the voltage amplitude, In one example using realistic radar parameters,
it is shown that the detection-information procedure increased the detection probability
from 40% (using the more conventional Neyman-Pearson procedure on amplitude) to
899% after 5 seconds of processing at a fixed overall faise-alarm probability of 1% and

a signal-to-noise ratio of 6 db, Furthermore, in the detection-information method,
there are no "false alarms® in the usual sense which then obligate the radar to take ¥
further measures to confirm or reject the hypothesis that a target is present, That is, 4
amplitude-threshold crossings are expected to occur on an occasional basis in the

detection-information procedure, It is the increase in this threshold-crossing rate

P P T AAn |

which is important, The possibility of a #false alarm type of mistake®" stems from the
uncertainty in determining the rate due to a finite observation time, (Sections 4.1, ]
4,2, 4.3 and Chapter 6).

(£) A new representation of band-limited or time-limited Gaussian noise is
. utilized which is analogous to a two-dimensional Karhunen-Loéve expansion. The
representation is based upon the identification of independent noise ®*modes®* in the
time -frequency plane, with each mode having an energy described by the Boltzmann
factor of statistical mechanics and occupying an area of one logon in the time-frequency

plane. This noise representation is particularly useful in the information-analysis of

.
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radar but should also be found helpful in other noise problems,

3
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(g) An explicit formula for parameter information is derived in terms of a
multiple -target echo ambiguity function, The formula yields results which are con-
sistent with intuitive notions and formal definitions of information, Consideration of
these results shows that contour areas may be defined similar to "ambiguity areas¥,
An explicit interdependence coefficient between range and Doppler information is de-
fined which is unity for linear-FM modulation and zero with no frequency modulation
(pulsed-CW), The parameter-information formula may also be used for waveform
evaluation, For example, the decrease in total received information may be computed
for two proximate targets of various amplitudes as their spacing is decreased to zero,
(Chapter 5),

4 (h) By defining a distributional type of information in a gas problem involving
thermodynamic entropy, a formula is derived which is directly analogous to Shannon's

formula for the information communicated through a noisy channel, (Section 3, 3),

1.2 Historical Background

The early radars transmitted simple pulses of energy at a constant frequency,
The i-f bandwidth (in cps) was empirically determined” to be optimum when it was
chosen approximately equal to the reciprocal to the pulse width (in seconds), At that
time, the expression Wsignal-to-noise ratio® generally referred to the ratio of rms

echo signal voltage to rms noise voltage, i, e.,
A A

Signal-to-noise voltage ratio = SNVR = —oio. = _IH8 (L 3)
g
N N oB
where

A, g = Tms voltzge of pulsed sinusoid

oy T Tms noise voltage

N, = white noise power spectral density p
B = i-f bandwidth, ?

The signal-to-noise power ratio is then

e d

: 2 AZ

: SNPR = —5=8 - _ImWS . (1. 4)

i ol N_B

:i N N o]

If we multiply the numerator and denominator of Eq, (l.4) by the signal pulse duration

P, and use the optimum i-f-bandwidth condition
1

B = T ) (10 5)
£

=
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thén Eq. (L. 4) becomes
2 2
P A
SNPR = —328_ - _zmsbP . % (L. 6)
on P o N/B )

in which
= signal-pulse energy

E
N, = noise power spectral density = k7, where k is Boltzmann!' s

constant and J is equivalent noise temperature,

Therefore, with the pulsed-CW signal, application of the optimum-bandwidth condition
of Eq, (l.5) leads to the result that the SNPR is equal to a ratio of signal and noise
energy guaantities:
< E
SNER = ~ . (L.7)
o
The SNER is a more general parameter than the SNPR or SNVR since it involves only
signal and noise (energy) properties, but no explicit radar characteristics, This re-

sult is a consequence of using the optimization condition of Eq, (l.5).

The generalized importance of the SNER became more evident as the theory
and practice of radar advanced beyond the use of simple sinusoidal pulses, Radar
theory advanced along two distinct paths, respectively referred to as detection and
parameter estimation, and the SNER attained prominence in both areas. In a paper
concerned primarily with detection, North2 showed in 1943 that, with an arbitrary
signal waveshape, the linear filter which maximized the ratio of peak output signal
power to mean-square output noise possessed a frequency response function which was
the complex conjugate of the input signal spectrum (Fourier transform). Moreover,
under these optimum-detection conditions, the ratio of output peak power to mean-
square noise was found to be E/ No for the bandpass case, Thus, for a general signal
waveshape, the detection capability depended ultimately upon the SNER, whereas the
SNPR and SNVR merely appeared as special cases appropriate mainly for the pulsed-
CW signal, Numerous papers dealing solely with the detection problem appeared, and
various approaches were developed such as the application of the Neyman-Pearson

35 ¢ output voltage amplitude, the Ideal Observer6,

2,3,7-14 , Inverse Probabilityls-ls,
20

. I | .
zero-crossing criteria ? and non-parametric methods™" ,

statistical estimation procedure

-9

the Bayes Criterionz’ , the Sequential Observer

In the area of parameter estimation, general waveshapes were also treated,

15-17

In work by Woodward and Davies using the approach of %inverse probability®,

it was shown that range delay could be measured with an ultimate accuracy of

L e
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where

¢ = standard deviation of range-delay measurement

J ;z- = a normalized signal bandwidth
p = 2E/N_ .

Further re sultsls’ 21

, of a more generalized nature, involving the joint estimation of
range delay v and Doppler shift ¢ , showed that the Doppler frequency could be deter-

mined to an accuracy of

o, = v (L9)

where,

standard deviation of Doppler frequency measurement

1

%
iz

p = 2E/N_.

a normalized signal duration

As in the radar detection problem, the analytical results dealing with parameter esti-
mation again revealed the preeminence of the SNER in governing the ultimate limita-
tions of radar measurements,

A synthesis of the two areas of detection and parameter estimation tended to

' develop with the recognition that the same filter which optimized detection capability
also implemented the required correlation operation by which the optimum parameter-
estimation process was accomplished, This is the so-called North filter, or matched
filter,

The concepts of information theory were originally developed in a context some-

what remote from the radar application, In 1924, Nyquist™~ considered limitations on

T T

the rate of telegraph transmission and utilized a logarithmic measure of information,

23

This logarithmic measure was later employed by Hartley™~, and then developed into

an elaborate and rigorous framework, called inforrnation theory, by Shannon24. The
term (information) entropy was employed in connection with the concept of information

evidently because of the similarity in form between the logarithmic measure of a

number of alternative states to be communicated and the physical entropy of statistical
mechanics which has been related to the logarithm of the number of states (or com-

plexions) of a physical system,

3
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Some results of information theory were related to radar applicationsn, but
without substantial expansion of the approach by later investigators. However, signi-
ficant relations were observed by Brillouin 5 between the entropy measure used in
information theory and the physical entropy of thermodynamics and physics, These

were brought out by examples in various types of physical measurements,

As a result of the historical development reviewed above, the fields of radar
and information theory have progressed to a point where it has become possible to
take a more unified and quantitative view of generalized optimum radar processing,
and to relate the amount of information veceived by a radar to the amount of input phy-
sical energy required to obtain it, This approach has been pursued in the present
dissertation, In addition, interpretations of the role of the matched filter as a device

3 for optimum information extraction, and various other results, have been derived as
' described in Section 1,1,
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2, TIME-BANDWIDTH-LIMITED GAUSSIAN NOISE

2,1 Conventional Methods of Analysis

>
When stationary noise is treated, standard apalytical techniques involve the use
. of an autocorrelation function?‘

T
. 1
R_(7r) = lim x(t + 7)x(t) dt (2.1)
x T—Ooo-ZT f-T
where x(t) is a real noise waveform, The power spectral density is then given by the
) Fourier transform relation
x «jonfr
5.0 = [ . R (r)e ™ dt (2.2)

by the Wiener-~Khintchine theorem, 21

‘ If the noise is not stationary, a useful approach is that employed by Bello?Z8
i Letting
x(t) = %(t) e 27t (2. 3)

represent a complex narrow-band noise time function, where x(t) is the complex modu-
lation and fo is the carrier frequency, then a time-varying complex autocorrelation

function is defined in the time domain as
r(t,8) = ¥ (t) X(s) (2. 4)

where t and s are two time instants, the overhead bar denotes an ensemble average,
and the % represents the complex conjugate operation, If ;((f) is the Fourier transform
of %(t), then an analogous frequency-varying autocorrelation function may be defined in

the frequency domain by

Rif, 1) = X9 X(0) . (2. 5)
Using
ot O~ -janft
X0 = [ xye T at . (2. 6)
-®
in Eq, (2.5), we have .
) —p——— -jer(st -ft) .
R(f,2) = fm fm X (t) x(s) e e dt ds -
-00 ‘=
® o -j2r (st - ft)
= f f r(t,s8) e dt ds . (2.7
-0 ‘=




L

Eq (2. 7) expresses a fundamental duality between the time z'md frequency domains,
with the two domains being related by a double Fourier transform, It should be noted
that the analysis proceeds either in the time domain or the frequency domain, How-
ever, in the following material we shall work in both domains simultaneously by deal-
ing with areas of the time-frequency plane. This method will be found particularly
useful for the information-theory approach to radar analysis,

2,2 Two-Dimensional Representation

2,2.,1 Noise Occupancy in the Time-Frequency Plane

We consider first the case of white Gaussian noise which is bandpass-
limited to a bandwidth of B cps, At the output of the band-limiting filter, the noise wiil
be observed for a time duration of T seconds, By the sampling theorem for bandpass-
limited noise, there are TB independent noise samples involved, with each sample
having two "degrees of freedom® such as amplitude and phase (or the real and imaginary
parts of the complex voltage), It is important to observe that we are not physically
limiting (truncating) in both time and frequency, which cannot be rigorously defended,
(That is, the Fourier transform of a truncated time function extends through an infinite
range of frequencies,) We are, in fact, truncating only in frequency and then observ-
ing for a specific time, This type of noise will be described as boundary-limited in
the frequency domain and window-limited in the time domain, The situation is portrayed
in' Fig, 2.1(a), Each rectangular sub-area represents an independent noise sample
with two degrees of freedom covering an area of unity in the time-frequency plane,

Such a unit of area will be called a ®logon!, following Ga,bm:.29

The dual of the preceding case is shown in Fig, 2.1(b), where the noise has been
time-gated to a duration of P seconds. The frequency axis then represents the inde-
pendent noise samples as observed by a spectrum analyzer, The presence of independ-
ent noise samples in the frequency domain after time-gating may be less familiar than
independent samples in the time domain after bandwidth-limiting, An experimental
display of this phenomenon will be found in reference 30, Fig. 6, As in the previous
dual case, each independent noise sample again occupies an area of one logon with the

frequency separation between samples being 1/P cps,
2. 2.2 Application of the Boltzmann Factor

The concepts of the preceding section can be conveniently formalized by
an interpretation involving the Boltzmann factor of statistical mechanics, We consider
a physical system at a temperature.d which possesses n degrees of freedom, where
each degree of freedom may occupy any one of M possible energy levels with equal
likelihood in the absence of any other constraints, In a classical problem of physics,
the question is asked, "What is the most probable energy state of the system subject
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to the two constraints that: (a) the total number of degrees of freedom is a constant,
and (b) the total system energy is a constant?® To solve this problem, let F_ be
the overall number of ways that n degrees of freedom can occupy M energy levels,
Now suppese a situation in which n, degrees of freedom are in level El’ n, degrees {
of freedom are in level EZ' sesy and ny degrees of freedom are in level EM . By

combinatorial analysis, the number of ways in which this can occur is

- n} 2
F]. nll nzlooonMr * ( ’8)
The relative frequency for this condition is

P = Fl = n!
F; F nTn,T . on

: (2. 9)
M

where P may be taken as the probability of the state represented by Fye We wish fo
maximize ¥ subject to the constraints

. n= %1 n, = number of degrees of freedom = a constant (2. 10)
. i=1
M
E.= z n,E, = total system energy = a constant . (2. 11)
5 &4 171

Using principles of variational calculusSl’ 32

, it has been found thai the most probable
energy state of the system is such that the energy of any degree of freedom has a

probability distribution

T

E,
_ i

pE) & e X R

where

ety PG PR

k = Boltzmann! s constant,

As the energy levels are taken closer together, the probability distribution approaches
the continuous form
_E
p(E) « & X7 (2.13)

E
R ¥

The exponential e is known as the Boltzmann factor,

If we assume that p(E) may be normalized directly, then

o P -%
fop(E)dE= fo ve dE = 1 (2. 14)
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where v is the normalizing constant, Direct integration yields

= 1
Y 7 ’ (2, 15)
and thus E
U ¥ . 2.16
p(E) vy i ( )

It may be’noted, however, that such an exponential probability density function is the
Chi-square distribution with two degrees of freedom, This form would apply for a
physical system composed of many harmonic oscillators, Each harmonic oscillator
possesses two degrees of freedom and the energy variate E in Eq, (2,16) would be
applicable for each harmonic oscillator as a unit, We shall call such a unit (with two
degrees of freedom) a mode,

Using Eq. (2.16), it is found that the average energy of a mode is

Qo
E =f Ep(E)dE =k J (2. 17)
0

The standard deviation is

0
GE = Jfo (E - E )2 p(E) dE = &7 ’ (2.18)
which is the same as the mean value,

To illustrate the applicability of these results to the noise problem, we refer

back to Fig. 2.1(a). There are TB noise modes comprising the noise waveform, If

‘the average energy of each mode is k J , then the total average energy of the noise

waveform is
ES = TBkJ . (2.19)

Since this average energy is spread over a time T, the average power is

—

55

P=- =kiB » (2.20)

which is immediately recognized as the available noise power (GI\ZI ) of white noise that
has been bandlimited to B. Finally, the power spectral density is given by

No=_1B’. =kg . (2. 21)
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COnce allowing the validity of the above approach, it is seen to be a simple derivation
for the power spectral density of white noise as compared, for example, with the
method of reference 33, A block diagram ior observing the type of random noise pro-
cess being considered is shown in Fig. 2,2, which is self explanatory. The system

essentially observes a manifestation of the so-called "available? noise power,

We can obtain a further result of significance by considering the voltage waveform
Jjust prior to envelope detection, This waveform is sketched in Fig, 2,3, It is possible
to identify the individual modes as ®packets® of energy of time duration At %— .
The energy of such a mode would be given by

2 2
= = ’ (2. 22)

where R is the peak envelope voltage of the mode, The probability density function for
R is therefore determined from the Jacobian of the transformation between E and R as
__R
pR) = p(E) §5 = —B= ¢ OB R 5)
k.JB
which is the Rayleigh distribution, as would be expected. The Rayleigh distribution,
of course, characterizes the amplitude of the vector sum of two orthogonal Gaussian-
distributed component vettors, These component vectors represent two degrees of
freedom and may be thought of as the real and imaginary parts of the complex voltage
envelope, as used by Rice.3

2,2,3 Karhunen-Loéve Expansion in Two Dimensions

The type of noise representztion developed in the preceding section in-
volves a characterization in both the time and frequency domains simultaneously,
rather that the more conventional approach of working in one domain or the other with
connecting Fourier-transform transitions, The two-dimensional approach may be
formalized further by using a Karhunen-Loéve type of expansion in two variaoles, We
may, for example, define a Mstate function® Y(t, f) by the expansion

Y(t, ) = 'EB a, tIJ,-_ (t, f) ’ (2. 24)

i=1

where the case in Fig, 2,1{a) is being treated. In general, the coefficients a; may be

complex, Each of the eigenfunctions ;pi(t, f) will represent a noise mode and the follow-

ing orthonormality conditions will obtain
o

%
f mqli (tsf)q»‘j(taf)dtdf = 8

ij s {2.25)
-0 -

)
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where ‘Sij is the Kronecker delta iunction, Since each noise mode is constrained to
occupy an area of one logon in the time-frequency plane, the Heisenberg uncertainty

(or indeterminacy) principle applies, There is a Fourier-transform constraint between
the time and frequency axes for each mode, To illustrate this, we may consider the
white noise to be composed of impulses (as is ordinarily done) as it enters the filter ..
of bandwidth B cps. The output of the filter therefore consists of a multitude of impulse
responses, many of which are too close together to be resolvable due to the finite filter
bandwidth, A resolvable impulse response of the filter, however, and the filter! s fre-
quency response function (of width B in this case) are Fourier transform pairs, and
together they encompass one noise mode,

Letting the center frequency of the filter be £° and choosing equally spaced central
time instants t. for each mode, as shown in Fig, 2,1({a), withi= 1,2,..., TB, then the
Fourier constraint may be applied as

s o -j2w it
Py (¢, 6) = f it £) e dt . (2, 26a)
=00
% jomft
W (L, £ ) = f i (ks D e df , (2. 26b)
-0

If we consider the energy of the process to be

TB
o] [s¢] % 2
Eg = f_ ooq;(t,f)q(t,f) dtdf = ), |a) , (2.27)
- i=1
then
2
E; = layl (2.28)

may be interpreted as the energy of the ith mode having a probability density function
given by the directly-normalized Boltzmann factor and having an average value of

E1 = kJ for all i, The absolute values Iai| are therefore Rayleigh-distributed,

<+« -e may tonsitructan-exarmple of consietent functions satisfyingthe stated condi-, . ., .
tiorns from the situation of Fig, 2.1(a). Let

\Ili(t, f) = \ili (t, fO) \Pi (tiv f) ’ (zo 29)

which is a product of two functions, For a rectangular passband, suppose

i £-£  -jEm(f-f)e,
¥; (t;, ) = K rect (—pg—)e y i=1,2,0.4,TB , (2. 30)

where Woodward! s nota,cion17 has been employed, namely,
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rect (x) 2, ’ pel < -;— ' ’ (2. 31)
4o [x| > _;- .

and K = a constant,
Using the constraint of Eq, (2.26b),

Qo .
bing) = [ w0 P Mar
-0

= KB sinc (B (t +1,))e 327 5ot , (2. 32)
‘ wherel?
sinc (y) é ﬁ%’ll o (2. 33)
xi Then Eq, (2.29) gives
£-f j2aff t-(£-£ )7,
g;lt, 0 = KB rect (—g—)sine (B(t +7))) e [% o] . (2.34)
; In order to satisfy the orthonormality conditions of Eq, (2,25), we require
® oo .
- f_m f_m P (t ) ¥ (t, £) dtaf = 85
; © o £-f j2m (£-£ Mr. - 7))
. =[ f “B2rect? ( 5 ©)sine(B (t+7.))sinc(Blt+7.)) e ot
1 J
g - “ -0
(2. 35)
(o) f-f j2u(f-f )c.-T.) [os)
= f-mK‘*Brectz(_Eﬂ)e ot JFar, f_mB sinc(B(t +'ri))sinc(B(t+-rj))dt.
This is satisfied by the conditions
.
= |1 =4 = Jd
: K‘q/'B' » T 0 T (2.36)
A T -
i C I iy j
{ J B sinc(B(t+ ) sinc (B(t +§-)dt = 5ij . (2. 37)
)

Finally, the characteristic functions satisfying ail specified requirements is, from
Eqs. (2.34) and (2, 36),

(f-£ )i
err[fot - +

£-f )
¥ty £) = rect (—)sinc (B(t+ e ]; i21,2,000,TB. (2.38)
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3. RADAR SIGNAL PROCESSING>® 37

3.1 Pulsed-CW Radar

3.1,1 Measurement of Range Only

In order to develop some fundarnental relations involving radar infprmaﬁ?in,
we shall first consider a simple pulsed-CW radar for the measurement of range only,
It is assumed that the target is known to be approximately stationary in space. A

block diagré.m of such a system is shown in Fig, 3,1, where the optimum i-f band-
width B is used, 1I,e,,

B = g cps ) (3.1)
for a pulse width of P seconds,

On the CRO display, we observe noise modes having a time-width of P seconds,
due to the i-f bandwidth restriction of B cps, and a signal echo response also having

; a width in the order of P seconds, (Ideally, for a rectangular transmitted signal

: envelope and a rectangular i-f filter pass band, the signal response at the output of

the i-f filter is triangulser with a base width of 2P seconds,) The property that the
signal response has the same duration as a noise mode is characteristic of all matched-
filter radars and it will be shown later that this condition is optimum in terms of the
radar! s efficiency in acquiring information,

Consideration of the radar output, as displayed on the CRO in Fig. 3.1, indicates
the need for a threshold test to establish a measurement "reliability?, Clearly we
cannot accept all identifiable peaks as signal responses since most of them are due to
noise, However, if a sufficiently high amplitude threshold level RT is set, as illustra-
ted in Fig, 3,1, then reasonable assurance can be obtained that a threshold crossing
is indeed due to the presence of signal and not due to noise alone, Higher threshold

settings imply greater measuremert reliability but decreased sensitivity to low-level
signals,

T R e

A reasonable way to evaluate the efficacy of the threshold level setting is to com-
pute an overall false alarm probability givern by

Pra=1-(- p'FA)TB , (3.2)

\
where
TB = total number of independent opportunities for a threshold-
crossing due to noise alone, within the range-delay surveil-
lance window T
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P?E‘ A" probability that a single noise mode will cross the
amplitude threshold

e o ST R MO PRSP B

; PF A S probability that one or more threshold crossings will
' occur due to noise :.lone,
f For

k]
TBP'FA <<l s (3.3

as is usually the case, we have
t
PFAk:TBPFA (3.4)
by use of a truncated binomial expansion, Since the measurement reliability increases

with decreasing values of PF A it is reasonable to define a reliability fa.ctor?‘5 r, given
by

3 2w S A O AT S
-

_ 1
PFA--? . (3.5)

Now, from Eq. (2.16),

LB T
© kg &7
] - =
PFA fE Fg e dE e > (30 6)
T
where
ET = modal energy threshold corresponding to amplitude
threshold R, «

T
Substituting Eqs, {3.5) and (3. 6) into Eq. (3.4) and taking the natural logarithm of

both sides of the resulting equation, it is found that

Ep

& - Inr TB . (3. 7)
Certainly a measurement with r < 2 would be sufficiently unreliable to be meaningless,
since this would imply an overall false alarm probability of greater than 50%, Thus,
for any meaningful physical measurement, we must have

BEp

X7 > InTB o (3. 8)

\
Now consider the amount of information obtained by the measurement, Prior to
any observation, the target range delay was presumed to be somewhere within the a
priori surveillance window of T seconds, After the measurement, the signal may be
localized to a range-delay interval of 1/B = P seconds, assuming that the threshold
has been crossed. From the standard approach of information theory, the uncertainty

-
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‘ has been reduced by a factor of T/P = TP so the acquired information is

P 12 = 1og, TB bits . (3.9)

where the superscript (2) indicates that a logarithmic base of 2 has been employed.

The information may also be expressed in other units, For example, it may be said .
that the information obtained is

I(e) = InTB natural units {called nits or nats) o (3.10)
or '

I, = kilnTB thermodynamic units , (3.11)

‘; where k is Boltzmann! s constant, The latter form is derived by analogy with the recu’t
“ of statistical mechanics that thermodynamic entropy is equal to k times the natural log-

arithm of the number of system "complexions® in the most probable state of the system,

Tt is now pessible to reach the conclusion that, for any meaningful measurement
of range delay in the problem posed, we have

P

E
i k-; > 1f®) , (3.12)
?‘ . or
N E
5 T

; That is, the signal-to-noise energy ratio E/k 7 always exceeds the information obtained,
where the latter is expressed in natural units, or equivalently, the input entropy quan-
tity E/g always exceeds the information expressed in thermodynamic units, In any
measurement, we would like to maximize It as much as possible, but it can be no
greater than ET/,7 . The inequalities of Eqs, (3.12) and (3, 13) establish an equivalence
between the SNER employed in radar terminology with the concept of physical entropy.
They also specify a lower bound on the input SNER required to make a measurement

which can provide a specific amount of information I(e). Hoswvever, they do not expli-

SRR I W A

citly specify what information advantage or disadvantage is incurred if a high reliabil-
ity factor r is employed, or if the input SNER exceeds the threshold value by a signifi-
cant amount, These questions will be more clearly formulated in the later discussions,

P I R SUSOTIL S 4

3.L2 Measurement of Doppler Only

[

'We shall here consider a pulsed-CW radar for the measurement of
Doppler shift only, The basic block diagram for the system is shown in Fig. 3.2.
The spectrum analyzer may be thought of as a bank of contiguous filters of bandwidth -
B = 1/P cps, or a Coherent Memory Filter.30’ 38 The surveillance window is now in

the Doppler domain and is designated as W cps, The number of independent noise
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L e

niodes within the surveillance window is PW and therefore the threshold energy must
be such that

Eq
5 > WPW (3. 14)

e

in order for the reliability factor r to be at least a value of 2, Since the information is

1) = 1npw , (3.15)

we again have the result stated in Eq. (3.12).

3.2 Radars with General Transmitted Waveforms

3.2,1 Chirp Radars for the Measurement of Range On1y39’ 40

We consider first a special waveform of major importance, namely,
linear-FM modulation, as illustrated in Fig, 3. 3(a) by an instantaneous frequency-vs-

[

time plot along side of the signal spectrum, As with the pulsed-CW range-only
measurement, the target is assumed stationary in this example, The matched filter
has a frequency response function which is the complex conjugate of the signal spec-

. trum shown in Fig. 3.3(a). Therefore, the output noise modes have a duration of 1/B
S ment ez = sf0genda aghichododhe xecipaacal wfthaumatchedefilter bandwidth . Tha. signalis.aleomu

compressed to a time width of 1/B seconds, The number of independent noise modes

in the surveillance window is TB and therefore the threshold energy must be such that

Ep
-17 > In TB » (3.16)

and Eq. (3.12) again holds. (The block diagram is shown in Fig. 3, 3(b).
3.2.2, Simultaneous Measurement of Range and Doppler Shift

3.3.,2.1 General Two-Dimensional Compression (Maximum-Likelihood

O o KRR WL AP Y AL N AR

Receiver)
3,2,2,1,1 Linear Detection

In this more general case, the theoretical radar model is as shown in

LTI £ 3

Fig, 2.4, Following the method of inverse proba.‘bi.lity17 for the joint estimation of

range delay and Doppler shift (single target assumed), we wish to determine the values

-

of T and ¢ which maximize the a posteriori (conditional) probability p{t,¢/A ). By the
Bayes equality, we have .

pled/t) = B po/ee) R )

Complex signal notation is used, as reviewed in Appendix A,

pv—
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4 where .

p(t,$/t) = conditional a posteriori density function for v and ¢,
given the received noisy signal ¢(t) = inverse probability -

p(7,4) = apriori probability (before the measurement)
p(¢/x,4) = likelihood function
00
plt) = a normalizing function such that f plr,d)A)dr dop = L
-00
If plr, ) is uniform, it is seen that the method of inverse probability leads to a maxi-
mum likelihood estimate since maximization of p('r,cb/g) is then equivalent to maximi-

zation of p({ /v,4). Following this customary assumption of a uniform a priori distri-

bution, it follows that
ple/1:¢) = Pllt) = L8 -y L)) ' (3.18)

where
¢(t) = a given fixed waveform observed

N 0 A A T M o —A‘E“""EE‘?’M&WW Vodan WAL SIS 0 B Dt
v(t) " = random noisé process, bandlimited to some “iront=eua®

bandwidth of W' cps
ji2rét

Mhasstses A BN aieksapmimtmmisATRIRe

N, ¢(t) = Ag(t-T) e = echo signal voltage (3.19)
’
in which A is a real constant amplitude factor, and v and ¢

%
are both assumed constant .

: . 1
I{ the receiver front-end is gated open for a time duration T', then 8

* This is a powerful, though inconsistent, classical radar assumption that has led to
many useful results. However, in the case of very large time ~-bandwidth products,
the assumption is inappropriate, 4l In that case, a more exact representation is
- jew fo(t - 7(t))
n(t) = A Elt-T(t)= AE(t-T(t)e

where 'F:(t) is the complex modulation and fo is the carrier frequency, If, for example

Tlty=1 +7t

then - . jZn’fot -j2n fo'.rt -j2n fo To

n(t) = AFEL-T) -7 ) e e e :
in which the Doppler shift may be recognized as ¢ =-£ T=-2f X~ where T is radial
velocity and c is the speed of light, Also, for the very high Bn€ar velocities char-
acteristic of space propes, satellites and astronomical bodies, relativistic effects
may not be negligible,
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1 -K 2
-rxy [ 0|7 et
P(§/79¢)= ————Trwrl e -
(2rkgwr)

1 Q0
g [, 0 . e

a
where the latter result of proportionality is derived using the identity,
2 _ . 2 _ 2 _ * 2

%= fe)-n, 0% = e®®-2Re g0 0 +In_ @1 . (3.21)

Defining
00 s
(1, ¢)= fi Ll 0dt = A J e gt -7) eI2me ¢

o o . j2nf <
=A[f L) E (- ) e 32T Ot dt] oo , (3. 22)
7y -
where Z(t) and E(t) are ’Ehe’/complex modulations, then
1
|I"(-r,q>)|cos (2rf r +arg T (r,¢) )
pl/T d)ae &0 ° . (3.23)

The exponent reveals high-frequency fluctuations with respect to the + variable,
These are r-f phase effects which may be averaged out over one r-f cycle by defining
an area-preserving smoothed version of p(¢t/ T, ¢) given by
Tty d,
P (r.¢)= | plt/T.) dr
4 1
0 rn TT

o
1
T+ ur 1:_.:7_ |r'(1-,¢)|coa(21rfo-r +arg I'' (t,¢))

°’f1°e dr

- <_LML) , (3. 24)

k7
where Io(x) is the modified Bessel funciton of first kind and zero order,

Since thes function Io(x) is a monotonic function of %, the most probable estimates

of T and ¢ may be obtained by determining those values which maximize
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* j2m ot
[T (r, o) =A] [ g(t) £ (t-7) e™I2T O qy (3. 25a)
-0
S rrf
=Al [ O (f-¢) e df | , (3. 25b)
-0

-

where g(f) and g(f) are the Fourier transfoi.as of ¢ (t) and £(f), respectively, This
complex correlation process constitutes a linear operation on the received noisy echo
¢(t), followed by a linear envelope detection, The surface |['* (r »$)| will be called
the correlation surface and its typical appeara 'ce is as illustrated in Fig, 3.5. The
maximum-likelil.ood estimates are T and EB . The range and Doppler resolutions are
the widths of the correlation surface in the v and ¢ directions, which are in the order
of 1/B seconds and 1/ P cps, respectively, where B cps is the signal bandwidth and P
seconds is the signal duration, These resolutions are readily deduced from Egs,
(3.25a) and (3, 25b), That is, Eq. (3.25a) indicates that the correlation operation on
¢ (t) consists of a multiplication by a function g*(t -<t), which is time -truncated to P
seconds, followed by a Fourier transform to the ¢ domain, The surface width in the
¢ domain is therefore approximately 1/P ~ps, In the other hand, Eq, (3.25b) shows
that the correlation operation can be viewed as a multiplication in the frequency domain
followed by an inverse Fourier transform to the v+ domain, The frequency width of
g(i) which is also the frequency width of the matched filter) is equal to B cps, and
therefore the width of the correlation surface in the v domain is in the order of 1/B
seconds,

The two-dimensional matched-filter process is summarized with reference to
Fig. 3, 6. It is assumed that the "front end® receiver characteristic passes a wide
band of frequenc.es W' for a time duration T', the latter being taken up tc 2 maximum
of the pulse repetition period (or unambiguous range interval), The echo signal's energy
arrives in the rectangle of area PB, The two-dimensional matched filter character-
istic is shown to the right and it basically constitute~ a time-frequency gate which
overlaps the signal' s energy area, The effect of tt : matched filter is to ®involute®
the signal' ¢ input energy area PB by compressing it into an essentially interior rec-
tangle of area 1/ PB.* If PB= 1, there is no compression, The rectangle of area TW
represents a surveillance area within which we look for targets, This surveillance

area should be no larger than necessary because the number of independent noise modes

" In the special ambiguous case of high interdependence between T and ¢ information,
as with a linear-FM modulation, the compressed area is elongated as shown by the
dotted ellipse,
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increases with the surveillance area and compels a higher amplitude-threshold setting
. for a given overall false-alarm probability, which implies, of course, a lower detec-
L tion probability for a given signal-to-noise ratio,

; 3,2,2,1,2 Nonlinear Detection

i The two-dimensional compression can be increased by . g a nonlinear
envelope detector having the characteristic of Io(x), the modified Bessel function, In
particular, we generate a voltage

wiad) = 1 (JEHEe) , (3. 26)

°\ k7

RS R

which is proportional to the exact smoothed a posteriori probability density function,

- as seen from Eq. (3,24), It is known that the standard deviation of the a posteriori
densi L. 17,18 -
ensity function is

(3.27)

1
e (3. 28)
¢ JT,

in the ¢ domain, where

_ 2E _ 2 x received signal ener (3. 29)
P T ky ~ Tolse power spectral density .

R s o St s L e O A e

@
(2n)%  £|86)|? at

< - — ;°° - = {normalized signal ba.ndwidth)2 (3. 30)
[ le@)]” at

-00

LA A S

ERPRORE L S Y K

[s 0]
2n)’f |8 a
-0

o0

GRS

=00

¥
(24

= (normalized signal dura.tion)2 . (3. 31)

ekt

LI

The standard deviations expressed by Eqs, (3.27) and (3, 28) may therefore be imme-
diately used as an approximate measure of the resolution capabilities inherent in the

Bessel-functio:n detector of Eq, (3.26). In terms of a practical example, and a more
standard resolution definition, it is observed that the 3-db width of a Gaussian distri-

bution (from which o and g, are derived under high SNER conditions) is about 1, 6
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‘é« times the standard deviai:ion. Thus, the 3-db resolutions become
A
&y 28 (3. 32)
3 P
7 Ab m L. 6 (3.33) -

3

in general, for p >> 1. Furthermore, if the signal is truncated in a rectangular (chirp)

characteristic, say

. A £-f
[&(t)| = rect (-tp-) and |£(f)|= rect (_B_o) R (3. 34)

4§r= =1.81Pand‘J_=-'-r- B =1,81B

. I p . (3. 35)
;> 3 3

and the resolutions are

then

At n 229 (3. 36)

BJF

Aq)“ _2'-2 .
Pl

Eq. (3.26) may be written in a more convenient form as

PRy R R e g g s

(3. 37)

plr.d) = I (p|T (r.9)]) (3. 38)

where

T, 8) | = 5 | T s 6)] . (3.39)

The peak value of lI’(r,q;)I is approximately unity under conditions of high SNER
since then (neglecting noise)

Sk

.Ezrrcl)ot
E(t) = AjE(t -7 je ’ (3. 40)

S {IVERRRNIIGS AR W S Y R e X

,,.

where

IR

true value of range delay

o <A
[=]
i

true value of Doppler shift

g
t

true amplitude factor,

and therefore, from Eq. (3. 25a),
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(e o)
It )| = [Tt o)l = AL f-m lg(t-< )[*dt=2E . (3.41)

R

Using Eq, (3, 38), the Bessel function envelope detector is seen to operate as
shown™" in Fig, 3,7. The improvement in resolution resulting from such a det:ctor
characteristic is illustrated in Section 6, 2,1, It may be noted that the Bessel-function’
detector does not alter the detection probability, although low-level response regions
(such as sidelobes) are suppressed for the low-noise case. The detection and false-
alarm probabilities may be established in the linear-envelope domain and these prob-
abilities are merely transformed, along with the amplitude-detection threshold, by
the nonlinear detection characteristic.

3.2.2.2 Doppler-Channel Implementation

Prior to envelope detection, it is necessary to implement the correla-
tion surface | I (r, $)|, which can be accomplished with linear systems., Two alterna-

tive approaches to this implementation are to use:44’ 45

{a)} Doppler channels, or
(b) range channels, In this section, we shall deal with the Doppler-channel viewpoint

in which ¢ in Eq, (3, 25a) is quantized as ¢;. Now,

0 - -j2néd.t
Re I (r,¢;) = A [ Re[t_,(t\ £ (t-1) e " ]dt
-Q0

o -j2n¢it
= A f_m Re[g,(t) e ] Re £t~ 7) dt . (3.42)

The latter form is readily seen to be equal to the previous form by expanding the pro-
duct of the real (cosine) parts in terms of the cosine of the difference-arguments and
the cosine of the sum-arguments, The integration of the term involving the cosine cf

the sum-arguments is zero since that term contains fluctuations at r-f frequenc.es,

The latter form in Eq. (3.42) can be implemented by frequency-shifting the
received signal t(t) downward by $; cps {or passing the received signal through a
filter shifted upward by b; cps from the zero-Doppler filter), and then applying the
signal to a matched filter with impulse response

h(t) = Re £ (P - t) ’ (3.43)

where P is the signal duration. By the convolution integral, the filter output is

fo o] . -j2mo. t!
y(t, o) = [ x(t')h(t-t')dt = | Re[g(ti )e 1 ]Re £(P-t +t )dt!
-0 -00
= Re ' (t - P, ¢,) , . (3. 44)
T e e » P e R G T A A MRS NI VSR E T,
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The real-time axis at the filter output is therefore the v axis, and |I'' (r,4)]| is the

output signal envelope (see Appendix A).

Each value of $; represents a separate Doppler channel and the Doppler-channel
outpu. signal envelope traces out a cross section of the correlation surface at ¢ = LT
In order to obtain complete coverage within a surveillance window of area TW in the
T - ¢ plane, a number of contiguous Doppler channels are required, They should be
spaced by approximately A¢ = -1},- cps, which is the linear Doppler resolution of the
system, Division of the surveillance area into Doppler channels is depicted in Fig,
3.8{a).

At the output of each Doppler channel, the signal is compressed into the time-
width of one noise mode, by reasoning similar to that employed in Section 3,2,1,
Therefore, Eqgs. (3.12) and (3.13) hold in each channel, The information in each chan-

nel is
IT(e) = InTB , (3. 45)

where
T
B = signal bandwidth,

range-delay surveillance window

and, in order to obtain this information, it is necessary that

s (e}

E
K5 . . (3. 46)

3,2,2.3 Range-Channel Implementation

In the range~channel viewpoint, range delay is quantized by producing the

complex signal
Mest) = Aglt) £7(t-7)) , (3. 47)

the real part of which is the physical voltage., Tae signal x(t,ri) can be generated by
heterodyning the received signal ¢(t) by a delayed replica of the transmitted signal

g{t -¢ ,, and passing only the difference-frequency signal. Then a spectrum analysis of

Re \(t, 'ri) yields (see properties in Appendix A)

‘]é_ I?[)\(ts Ti)] I

2k, 9) = |9 [Re MeTy)] |

IT e s $ >0 , (3.48)

W

where f denotes the Fourier-transform operation and ¢ is the frequency argument in

the transformed domain,
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Each value of rj represents a separate range channel and the spectrum analysis

at the rangc-channel output traces out a cross section of the correlation surface at

T=1.. In order to obtain complete coverage within a surveillance window of area

TW in the T - ¢ plane, a number of contiguous range channels must be used, They

should be separated by approximately AT = -é- seconds, which is the linear range-delay %
resolution of the radar., Division of the surveillance area into range channels is de- g
picted in Fig. 3. 8(a). 8

At the output of each range channel, the spectrum analysis has compressed the
frequency width of the signal response into the width of one noise mode, by reasoning
similar to that employed in Section 3.1, 2. Egs., {3.12) and (3.13) again obtain for each

range channel, The information in each channel is

Ié)e) In PW . (3.49)
where
W = Doppler surveillance window

£ P = signal duration,

and, in order to obtain this information, it is necessary that
k“ > I(e) . (3.50)

: 3,2,2,4 Overall Two-Dimensional Information

The overall two-dimensional processing may be viewed in terms of a

set of indeperdent radar channels with the established separation between channels

(linear system resolution) insuring that a signal response occurs only in a single channel,
(If the signal response were to substantially spill over into other channels, which tends :
to occur with high T - ¢ interdependence due to elongated ambiguity areas, the channel
sepa~at n should be increased,) In the linear system, the total range-Doppler infor-
mation received (for a single target) is

(e) T™™W

'r,tb = ln Tﬁﬁ = ln TWPB (3. 51)
= InTB +In PW = IT(e) ¥ I(;:) , (3. 52)

N

regardless of whether range or Doppler channels are employed, The raage and Doppler
informations are therefore seen to be additive and the total information can be calcu-

lated from the (logarithm of the) ratio of the surveillance area to the compressed

: energy area, or simply by adding the intra-channel information to the information

implied by the localization of the signal response to a particular channel. Using the
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Doppler-channel implementation as an illustration, there are TB noise modes within
the range-delay surveillance window of T seconds in each channel and PW Doppler
channels are required to cover the Doppler surveillance window of W cps. There are
therefore TBPW independent opportunities for a false alarm, so the information of
Eq. (3.51) is only obtained for

%u > In TBPW (3.53)
or
Y%‘ > IT'¢(3) . (3.54)

In the nonlinear system, the additional compression requires that the overall
T, ¢ information be written as

In p TBPW (3.55a)

Indp~ TB+Indp pw = N (e)y (N’1¢(e) . (3.55b)

If the reliability factor r is again introduced, the inequality in Eq. (3.53) is written
as

-E-g_ = ln r TBPW ’ (3' 56)

in accordance with the previous development connected with Eqs. (3.7) and (3.8). We
may write Eq. (3.55a) as

Ny ¢(e) = Inp+ ln TBPW . (3.57)

and Eq. (3.56) as

5 = In r + In TBPW . (3.58)
Eliminating the term In TBPW between Egs. (3.57) and (3.58), we have

Er ), (o)

r
-E-y— = T:d’ + In -5 . (3.59)

Subtracting Eq. (3.59) from the identity

E - E =
Bt i = p . (3. 60)
where
E = true input energy,
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we obtain
E-E E
T ~ (N (e) r
= | - &7'4’ -1 I . (3.61)

In order to accept the presence of signal as such, we have the detection criterion

E-Ep>0 , (3. 62)

and t:erelcre, for detection,

(e)
—RT - IT,¢ > In -:—;- (3-63)

or

p>re
If we now define an information loss L by

-~ s o000 b o2 sesi sl o.osLto_._oo_k%g_o ,.‘l“ll..cb(9).¢. P oo o ® Sbss0r0sr e ; we (Fal5pe - s
Ty

where we postulate that
L>0 (3.66)

by continuation of the proposition that the information does not exceed the input
entropy, then

p>re L . (3.67)
For a perfectly efficient measu:rement we would have L = 0, whicl:x implies that |
(N (o) . _E |
I-r, é = , {3.68) )
and the detection criterion becomes g
p>r (3. 69) :
i
{
or 1 :
p > . (3.70)
Pra

o r——

The sinallest that ¥ can be for a meaningful measurement is r = 2. For this condition

of minimum reliability, the detection criterion becomus
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7 > 1 . (3.71)
Since the single noise waveform which enters the radar is passed to all of the
channels, the noise may be correlated among channels. It will now be shown that this
correlation, over the 7-¢ plane, is propurtional to the ambiguity function | x{t, ¢)|»
which in turn, is proportional to the noiseless correlation surface II" (T, ¢)]. This
indicates: (1) that the two-dimensional matched filter essentially localizes the signal
response into the same area shape as a noise response, even in two dimensions, and
(2) that if the signal waveform design and channel spacing are such that the signal
response is predominantly restricted to a single channel, thenthe noice between channels
is largely uncorrelated. The derivation for noise correlation using the Doppler-
channel model is as follows. Let V({t) represent the complex envelope for a Gaussian
white-noise input. (Complex signal notation wiil be employed and the symbol < represents

a complex modulation. ) Thes output from one (reference) Doppler channel is

~ m ~
Yt) = [ TR (t-xpdx
-00

s (3.72)

Rand
bt e b 40 st e spherehifiFisvihesienpde s resporameTho sutsut 0f 2eseenndeBoprlem channad e ithl ¢ 4o 40 »

impulse response Ta'(t), is.

~

m ~
Y'e) = [ TR (c-y)ay

-0

(3.73)

The cross-correlatio:: vetween the tv.0 outputs is

~ ko~ ® P ek -~
V) ¥ (t+r) [ [ 3&55E (t-x)B (t+7-y)dx dy
<o -00
© o —= ~k ~
= [ [ % &)V (x4p) B (t-x)h' (t47-x-p) dp dx, (3.74)
-0 -00

where we have transfor:ned from the variable y to p by

x+p; dy = dp

<
n

(3. 75)

Now letting

t-x; dgq = -dx

te}
n

, (3.76)

we obtain
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Rf7) = [ S Tkt p) K*@)R! (@47 -p)dp da. (3.77)

We identify the correlation functions
R (1) = YHe)T(e+7) (3.78) .

for stationary noise v (t), and

[e o}
Ryp ) = [ B*@) Bl'a+2)dq . . B.79)
Then .
R (1) = j_’m R,(P) Ry, (T-p) dp ' , (3.80) |

which is the convolution of Rv (t) with th,('r). Now, for white noise,

Rv(-r) = No &5(t) , (3.81)
s0 that

Qo
R 2 N KLIEIS R SORAIR T ey o

In the Doppler-channel implementation, the only difference between the twu channels

is a frequency d.‘ference ¢ so that

-j2nédt

Bi(t)=h(t)e . (3. 83)
Then Eq. (3.82) becomes
oo~* - ~jen ¢ (qa+ 7)
R, (1) = N R (1,4) = N _fmh Q) Rlg+ e dq. (3.84)
Foi a matched-{ilter system
hit) = £ (P-t) (3.85)
SO (e o] LIy ~ -jZTI' ¢ (q+T)
R (me)=N, [ & (P-a)E(P-q-r)e dq
52w ¢(T + P) €t g o~ j2w ¢ x
=e N, [ £@&Ex-T)e dx (3. 86)
-Qo0
by using
P-q=x (3.87)
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and

dx = - dg . (3.88)
Then

QG ~ ~% -jZn cbx
No | [ &) (x-1)e dx | = N [xine) .  (3.89) .
-

R (T,
IR (7, )]
which was to be shown.

In the preceding work, as well as in the former single-channel analyses, it has
consistently been seen that a matched filter compresses the signal energy into the
concentration occupied by a single noise mode. This property is optimum from the
standpoint of information processirg. For example, suppose that we consider the
compressed signal area to be fixed, and postulate that more than one noise mode occurs
within the signal area. {This results from a situation where the matched-{ilter time-
frequency gate is larger than the signal's input energy area.) Then there would be
more independent opportunities for a false alarm within the surveillance area. The
amplitude threshold would therefore have to be raised, although the received infor-
mation (which depends only upon the compressed signal area and the surveillance area)

. has remained constant. Cn the other hand, we cannot compress the signal area to less

¢ thar™*thht Of 4o?se T becutsestitia woulkd imply 2 enatshedebiliar tirna &rageensye o
gate which is smaller than the signal's input energy area. This situation tends to
expand the compressed signal as well as the output noise modes. During such ex-
pansion, the signal tends to remain concentrated within the region of one noise mode,
but information is decreasing because of the output signal expansion relative to the
fixed size of the surveillance wincdow. In summary, from the standpoint of information
efficiency, the optimum {iltering process is accomplished by the smallest time-
frequency gate which encompasses the signal's input energy area without substantially
rejecting signal energy. This is also the basic characteristic of the matched filter,

which is krown to be optimally suited for detection and parameter estimation.

3.3 Relation of Results to Statistical Mechanics

3.3.1 Distributional Information Defined in Terms «f Physical Entropy

In the preceding s:ctions, we dealt with various radar problems and determined
equalities and inequalities between the parameter information, expressed in natural
units, and the SNER required to obtain it. By a simple change of units, these relations
were seen to be equivalent to relations between physical entropy and information in
thermodynamic units. The associations were such as to suggest an equivalence between
physical ertropy and information, of the type specifically stated in Eq. (3.68). In

tliis secticn, we shall be able to acquire further corroboration of such an equivalence
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by starting with a thermodynamic problem and deriving similar results.

Consider a long thin thermally insulated container filled with an ideal

monatomic gas, as shown in Fig. 3.9. We assume that a stationary external energy

source is located somewhere along the x-axis within the region

0<x«<X (3.90)

and its location X, is to be determined. The source injects a moderate quantity of
heat energy E in such a manner that it fills a subvolume equal to 1/q times the total

volume. I e., the input energy is concentrated in an interval

X
= = . 3.91
O 3 (3.91)
where
1<9<Q ) (3.92)

with Q representing a limit on how much concentration can be physically achieved. A

subvolume width Ax centered at x = x' will be called subvolume (or section) V (x').

Intuitively, it would be said that, if q = 1, no information is received and if q = Q, the

maximum information is obtained.

4 e ses e cse o.04 Thedintradaction of. o zediammount ofeenergy B resulissinean entRoORYdncrease o
' of
+ qA +4qA
Jot 98T Tt8T o (w/q) a7
AS' = f 5 - —
7, %
3.93)
C W H (
= Y oas 187
7o
where

N
|°d
<
i

temperature rise in subvolume V(xo)

w/q = weight of gas in subvolume Vix,)

Q
n

specific heat at constant volume.

If no information were obtained, then q = 1 and the entropy will be denoted by the un-
primed value

.

AS = s, =C,win (14 A;Z; ) (3.94a)
Cv w AT E AT
S S, { . .
N 30 70 or TQ- <<l , (3. 94b)
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and it should be observed that

AS' < Sp forq > 1. . {3.95)

The quantity Sp will be referred to as the entropy-equivalent of the input energy, or
simply the input entropy. -

We note, now, that a greater amount of received information (higher q) implies
a smaller entropy rise AS'. Since entropy represents unavailability of work, it is
immediately concluded that more input information implies a greater availability.of
work. This result is completely compatible with the described gas model. For ex-
ample, if the input energy is introduced uniformly throughout the total volume, no
information is received and the thermal-equilibrium state of the system is not disturbed
so that there can be no further thermal work performed due to mixing or diffusion,

On the other hand, the more the fixed quantity of energy E is concentrated as it enters
the container, the higher the local temperature rise in subvolume V(xo) and the more
thermal work we can expect to recoup. In fact, it is proved in Appendix B that if the
added heat is subsequently allowed to mix with the remainder of the volume, then the
entropy increases by an an.ount

N = Sp - AS! (3.95)
as.the received infqrmation in congurrently lost. We §ha“£1 associate N with information
and it will be called negentropy. For a specific guantity of input energy, ‘here then

exists a principle of conservation of information and entropy such that

E
= AS'+N = — . 3.97
Sp A 7 (3.97)

o

To review, for a given energy E there exists an entropy-equivalent S_ = —g—— ’
o

assuming AJ << 70. When E is introduced into supvolume V{( x_), the increase in

system entropy is AS'. We also state that a further quantity N is received, which is a
distributional form of entropy identified with positional information, and which is ex-
changed for a further increase in entropy as the added energy E diffuses throughout
the volume (and information is lost). It is an interesting characteristic of this type of
information that a greater input information implies a greater amount of available
thermal work. In this sense, the information tak: s on the attribute of a physical
entity rather than only an arbitrary measure, which is a fundamental conclusion of a

cybernetic nature.

Although the negentropy N hae t- s far been associated with a measure of
information, we have not yet related N co the type of infovmation discussed in the
radar application, This relation will now be clarified. From Eqs. (3.96), (3.93) and
(3.94a), we have
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s - C w -
_ L d "V qQAad
N=C_wlin(l+ - In (1 + 2—— . 3.98
yWin e S ) —Y i 5 ) (3. 98)
c s . 48-51 . .
From the theory of statistical mechanics, it is known that
kn
va= - =km , (3.99)
where
k = Boltzmann's constant
n = total number of degrees of freedom in overall volume
m = total number of modes, assuming two degrees of freedom per mode.
Thus, ‘
N=k[m1n(1+ A7 )-m'ln(1+3—£‘-’-7——) ) (3.100)
7o 70
where -
m' = r:;— = number of modes in subvolume V(xo). (3.101)

But, froia Eq. (3.94b)and Eq. (3.99),

| R . oo
where {
SNER = E‘g—; = p! . (3.103)
Thus, ' ' ;
N=k[m1n(l+ —%)-m'ln (1+§1-,)] . (3. 104)

This formula for negentropy bears a remarkable similarity to Shannon's formula for
the information capacity of a noisy communication channel, which will be further dis-
cussed in the subseqguent section. We note here, however, that N approaches zero as
p' approaches zero. Also, if m' is very small compared to m so that the second term

is negligible (greatest received information), and if m is very large, then
N=k p' , (3.105)

which shows that the Jsreatest received information is characterized by

’

N E
.._E_~SNERz ~k—‘7—° . (3- 106) .

Comparison of this result with Eq. (3.68) or Eq. (3.54) shows that we should identify

N with information in thermodynamic units or N/k'with information iu natural units.
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3.3.2 Comparison with Shannon's Formula for the Information Capacity
of a Noisy Channel

From Eq. (3.104), it is seen that the distributional information N = N'€!

(in natural units) is measured by a change in the quantity

M m) = m In 1+ L) . (3.107)
for a fixed value of p'. That is,

N 2 NS m) - Nt ) . (3.108)

We associate N(e )(m) with an a priori value of information entropy, aad N(e )(m' ) with
an a posteriori value of information entropy, the difference being information.

24,5

. . 2 . . .
For comparison, consider Shannon's formula for the information capacity

of a noisy channel:
AL B_1 (L +S/N) nits/ sec , (3.109}

where

Bc = channel bandwidth

S/N = signal-to-noise power ratio per transmitted pulse.

In a time duration T, the amount of amplitude information communicated is

fe) . grle)gp TB_ In (L + S/N) natural units. (3. 110)

Now let us assume ‘hat a sequence of sinusoidal pulses, each of duration P, is being
transmitted, and they are received by a matched filter naving a bandwidth of B = 1/P,
as in Eq. (1.5). Then, from Eq. (1.6),

!
S/N = SNPR= & . (3.111)
o
where
E' = energy of a single pulse
N0 = kJ = noise power spectral density.
Across the channel bandwidth Bc’ we can fit a parallel group of
Bc
5 - ch pulses (3.112)

and, in a time T, there are T/P such pulse groups giving a total of
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PBC‘

U

= TBc pulses . (3.113)

(Alternatively, we could have transmitted pulses of bandwidth Bc and wouid have also

ended up with TBC pulses for matched-filter reception.) Therefore, Eq. (3.111)can
be written as

- E - !
S/N = TE Ky - -T%-c— , (3.114)

where

E = total energy of the signal.
Finally, substitution of Eq. (3.114) into Eq. (3.110) yields,

]
1) = mma+ £ = 1®)m) . (3.115)
where
m = TBc = number of noise modes in the time-bandwidth area occupied by

the message.

For a fixed balue of p' (i.e., fixed total energy), the information I(e) is a function of
on'y the number of modes m. Distribntional information, as expressed by Eq. (3.108),
is therefore seen to be the difference between N( )(m) for the a priori surveillance

region and N( )(m ) after recaption. In a matched-filter radar, m' = 1 so that

N - mn e R )= (g le) . (3.116)

Thus, after the measurement, we are still left with ana posteriori uncertainity
{entropy) ziven by

H®) = 1na+p) . 3.117)

Now, Eq. (3.115) indicates that this is the information that can still be extracted from
the matched-filter output {for a signal immersed in one noise mode). In fact, this is
the amplitude information about the signal. Thus H (e ), the.a priori entropy, is the

sum of a distributional information term N( e) and an amplitude information term H (e)

The generality and applicability of physical-entropy and information-entropy
concepts to bo\th thermodynamic problems and electrical problems stems from the
use of univers\al properties such as energy, temperature and degrees of freedom. In
fact, the Boltzmann factor has been shown to be completely applicable to a hybrid
system such as a mechanical (leaf-spring) resonator immersed in a container of gas.
The spring is characterized by amplitude and phase propertie553'55 and cornprises

two degrees of freedom as a harmonic oscillator.
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3.3.3 A Signal-Detection Criterion Relating Input Physical Entropy to
"Absolute" Information Entropy of Noise Background

It is assumed, here, that the signal is immersed in one noigse mode, as
at the output of a matched filter, Frora an equation such as Eq, (3,2), we have

Ppo=1-0-Ph,) = PL, . {3, 118)

Substituting Eqs, (3.5) and (3, 6), it is seen that

Ep
= . 3, 119)
v Inr ( 1 9‘

The minimum useful value of r is 2 and therefore the threshold of deteciability, by
this criterion, is given by

E'T‘
Y =lz=074 . (3. 120)

With a slight increase in reliability to r = e, we shall (reasonably) define the detecti-
bility by the criterion

Ep

Tj= Ine=1 . (3.121)

Now the energy of the noise mode is characterized by the normalized Boltzmann

factor of Eq. (2,16). If the energy levels were quantized to a fine interval §E, the

information entropy would be a.pproxima.telysz’ 17
© . .~
ny = j(') p(E) ln[p(E) 5E] dE (3. 122a)
=1l+lnk -InsE s (3. 122b)

by substitution of Eq, (2.16). By using the natural quantization

§E = 0o = kg ) (3.123)
Eq. (3.122b) reduces to
Hl(\?) = 1 natural unit . (3.124)

Therefore, from Eqgs, {3,121} and (3.124), the signal detectability threshold is given by

ET_

X5 - Hf\?) =1 , (3.125)

where HN will be refcrred to as the ®absolute* information entropy of the noise mode,
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The thermodynamic equivaleni to Eq. (3,125} is

Ep
—5- = (HN )t . ] (30 126)

where ET/'7 is the physical entropy increase due to signal and (HN)t is the absolute .
information entropy in thermodynamic units:

= {e)
(Hy), = kHy . (3.127)

In order to interpret the results, it should be recalled that information entropy is funda-

mentally deﬁ.ned52 as a generalizatidn of

g®) - _mp = N (3.128)

3

wher: N = 1/P is a number of alternative equally-likely states, Therefore (HN)t
represents the average value of the logarithm of the number of distinguishable noise
amplitudes {subject to quantization §E = Op ). Eq. (3.128) states that the physical en-
tropy increase from the si,nal must exceed the value (HN) in ordar to be detected,
This is consistent with a well known result of statistical mechanics which relates the
thermodynamic entropy to the logarithm of the number of system state: or ®complex-
ions". That is, assume that a system is in a condition such that n; degrees of freedom
are in energy level E;» n, degrees of freedom are i energy level EZ’ eeesDyy degrees
of freedom are in energy level EM. The number of ways in which this can occur is

= n}
F]' - nll nzlooonhd! ’ (3-129)

as given by Eq. (2.8), where n is the total number of degrees of freedom, Let us add

a small quantity of energy E such that one degree of freedom in level E; jumps to a
higher leve! Ej’ with

E = E-E . (3. 130)

Then the number of ways that the new situation can occur is

- nl
Fz B nll...(ni -1)!..'(nj+1)!...nM! . (3.131)
Now
-F—l “n I N ‘--nj ’ for n, >> 1 . (3.132)
j+

The system is in thermal equilibrium before and after th~ introduction of the energy E
so the Boltzmann factor of Eq. (2.12) applies, That is,
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n -5

P(El)':"ﬁl' a e 73 l=1320000oia000’590009M . (30133)

Therefore Eq, (3.132) becomes
E.-E,
i E

R s e 3,134

-F-{- = e = e 3 ( L4 )
and so

E F,

-Izj-'-'-'lnri— =1nF2 -lnFl . (30135)

Thus, physical entropy is inherently related to the logarithm of the number of alterna-
tive states by virtue of the applicability of the exponential Boltzmann factor, The de-
tectability criterion of Eq, (3.125) therefore is predicated upon the minimum energy

that must be added to overcome the degree of randomness in the noise, as measured by
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4, OPTIMIZATION OF AMPLITUDE THRESHOLD LEVEL

4.1 Motivation for Amplitude-Threshold Optimization

In the previous radar discussions dealing with the nonlinear Bessel-function
detector, when the input SNER was equal to the information as expressed by Eq, (3. 68),
the reliability factor r was equal to two times the SNER, for a barely detectible signal,
as indicated in Eq, (3.69). Now, from Eqgs, (3, 97) and (3. 116) we may write

= = N ema+ , (4.1)
£ Jo
where

N(e) = distributional information obtained

AS' = In(l +5') = amplitude entropy (not yet extracted after

pulse compression).

If we associate Eq. (4.1) with the radar receiver employing the linear detector,
then

Ep

-ri;- = lnr TBPW = In TBPW +1nr

1®) 4101 +p) , (4.2)

where

I(e) = In TBPW = distributional information of linear system (4. 3a)

b o

1+p* =1+ SNER . (4. 3b)
Thus, with the nonlinear detector, all of the entropy increase appears in the form of
distributional information for the maximum reliability (to allow detection) of

r = p = 2p! ’ (4. 4)
whereas, with the linear detector, the entropy increase may be interpreted as equiva-

lent to the sum of distributional information plus amplitude information, with a

measurement reliability of r = 1 + p? , In both cases p' > 1 implies r > 2, as is re-

quired for a meaningful measurement, It is intuitively consistent that no amplitude
information is conveyed with the nonlinear detector because Eq, (3.38) shows that it
is necessary to know p before we can implemnent the nonlinear detector and therefore no

amplitude information should be expected.

With either the linear or nonlinear detector, the reliability r increases with

SNER = ¢' , as expressed by Eqs, (4, 3b) and (4.4). This implies an increase in
threshold value by virtue of Eq, (3,56), which is

i 5 = e e b s - e AB b e i

sramemars

1




4

"

B

e b

B AT
oy RV K

LR
R

e
f o

ooy e

PR S S Yol
-

e S

53

Y7 = WnrTBPW . (4. 5)

The conclusion that the threshold level is an increasing function of SNER, in
order for the equivalence of physical entropy and information to hold, raises the ques-
tion of possible optimization of the amplitude threshold for a given SNER. It is shown
in this chapter that such an optimum level exists and can be usefully employed in an
efficient radar detection procedure, It may also be observed, at this point, that the

information InTBPW, defined for the linear detector, does not increase with SNER,

This may appear inconsistent from the viewpoint that the measurement accuracy in-
creases with SNER as indicated by Eqgs, (3.27) and (3, 28), although the resolution does
not, However, we are restricting our definition of positional information to a "bound"
form in which a physical compression of energy is actually involved. From this stand-
point, the nonlinear Bessel function detector allows the information to increase as

RO U,

In p TBPW while the linear detector causes the information to remain constant with in-
creasing SNER,

4,2 Detection Model

It is first assumed that the input signal-to-noise ratio is known, although a later
extension of the results will show that the analysis can be employed for a given range
of possible values of signal-to-noise ratio, In this procedure, we adopt the modz1 of a
binary input message x, which has two equally likely states:

X, = 0 target absent

X = 1 target present, i

At the output of a "black box® , which includes a voltage-amplitude threshold test,
we obtain a binary result ¥; : :

Vo = 0 target judged absent

VW= 1 target judged present,
The model is depicted in Fig, 4.1,

A detection information I(]g) may be defined as

2) _ g2 (2)
12 o0 - o

) (4. 6)
() -
H" = -i =Z0 p(xi) log, p(xi) = a priori entropy 4.7
1 1 .
- Z Z p(xi,yj) log, p(xi/ yj) = a posteriori entropy. (4. 8) ;
i=0 3=0 :
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%o = TARGET IS NOT PRESENT
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x, = TARGET IS PRESENT

y,= TARGET JUDGED PRESENT

Fig. 4.1 Detection Model
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g The a priori entropy Ha. is a constant independent of amplitude -threshold level, The
& -
f maximization of information with : .. cect to threshold level is therefore seen to be
z accomplished by the minimizatioi ol the a posteriori entropy, which we may write as
@,y 1
% Hy -j_ ply;) [ Z plx;(y;) log, plx;/ yj)] . (4.9)
: =
1
; Minimization of H(b) is equivalent to minimization of the
Q = -j; L PO/Y) o plxy/yp s = 01 , (410)
!l
i averaged over the p(y.). Finally, minimization of the Q. is accomplished by producing
i\ the greatest disparity between p(xo/yj) and p(xl/yj), for j= 0Oor j= 1 (since Q, is
;; itself an entropy form for two states, with maximum entropy being characterized by
E equal proba.bilitiess?‘). That is, given yj, we have maximized the likelihood of distin-
: guishing whether a target is absent (xo) or present (xl), where these two possibilities
g,“ were equally likely before the threshold test.
%‘ »
1 H, ~an be written in terms of the joint probabilities as
' 1 (%)
2) _ P\X;» Yj
‘ H( p(x.,v.) log , (4. 11)
; JZ 1) 2 P(xoa YJ) + Ptxlo YJ)
where the joint probabilities are given by
é (xp7) = Bl ply:/%) = 5 Blyy/x) (4.12)
1 Pix; Y5 P iPYj 5 'Z‘PYj 1 s .
. for
- .1
plx)) = plx) = = . (4.13)
The conditional probabilities p(yj/ xi) may be recognized in more familiar terms as
p(yl/ x,) = Pp, = false-alarm probability (4. 14a)
: p(yl/ x;) = Pp = detection probability (4. 14b)
3 (y/x) =P = 1.P_,, = correct-dismissal probability (4. 14c)
- p Yo/ o CD FA
A p(yo/ xl) = PM = I-PD = rmissed-signal probability . {4. 14d)

Using Eqs. (4.7), (4.11), (4,12) and (4.14), we can now write Eq, (4. 6) in the form

13- 1+ e 10 D b1 PFa
D~ Zz VYD g2'15-"?"‘D+ ra  FA g2 P FPrs
P P
M CD
+ P,, log — + P, _log ) s {4.15)
‘ M %2 PytPcp  TCODT Py¥Pcp
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8
’

which can be minimized with respect to amplitude threshold level, Typical plots of
I(lz)) vs, threshold level are presented in Section 6, 2.2, Fig, 6.5,

The curves become
higher and broader with increasing signal-to-noise ratio,

For a given input signal-to-
noise ratio, it can be seen that there is an optimum threshold level which maximizes
the detection information, Inthe example cited in Section 6, 2, 2, it can be seen that

. . . R (s
the optimum ratio of threshold voltage to rms noise, Xp = —1L., is not a sensitive

o
function of signal-to-noise ratio, As a general rule, howev§r, if we may reasonably

assume, a priori, a range of possible signal-to-noise ratios, then the amplitude
threshold can be set at some average value such as

J I%)max(S/N) x0(S/N) d(S/N)

»i

T ’ (4. 16)
18 s/ ats/m)
Dmax
where
12) (S/N) = peak value of I(g) for a specified signal-to-noise ratio S/N ,

Dmax

and the integrations are performed over the a priori expected range of S/N values,
On the other hand, a radar ¢ signer may wish to sacrifice some information at the
higher S/N values and increase the information for the lower S/N values, Inspection

of curves of the type illustrated in Fig, 6,5 will then allow a well-compromised selec-
tion of threshold level,

4,3 A Detection Procedure Based Upon Threshold-Crossing Rate

After one chooses the optimum amplitude threshold in accordance with the cri-

terion deseribed in the previous section, a specific false alarm rate is obtained which

must be accepted a8 normal, This rate may be empirically determined as accurately

as desired by observation over a long period of time while the radar is in standby opera-

tion barring, of course, variations in equiv:lent noise temperature due to artenna point-

ing angle, etc, Detection must now be based upon an increase in threshold-~:7ssing

rate resulting from the presence of signal,

A detection procedure is postulated in which an output ®indicator® pulse is
generated if there are one or more amplitude-threrhold crossings per radar pulse,
Within some observation interval T » which includes many transmitted pulses, we

observe the rate at which the indicator pulses occur, If noise alone is present, the

probability of exactly k indicator pulses occurring in time T is, by the binomial dis-
tribution,

~

n

pr) ={, )X @-py) Tk (4.17)
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where
- ; ' .
P, PFA per transmitted pulse ¥ n PFA' where n is the number

of noise modes per transmitted pulse in the surveillance

region and P'F A is the probability of a single noise mode
crossing the threshold

n = fr T = number of transmitted pulses in time Tata pulse
repetition frequency of £ _

Using the normal approximation that

P{k) 8 N (@ p,, fp, (1-p,))

. (4. 18)
for52

ap,(L-p,) > 3 , (4.19)
and writing the indicator pulse rate as

r = ‘l%' ’ (4..20)

it is seen that the probability density function for rate with noise alone is approximately

/ £ p(l-
Po(r) = N\frpo . r po po) )

~

. (4, 21)

When signal is present, the indicator pulse rate increases and essentially (for n >> 1)

becomes equal to {(a) the false alarm rate and (b) the rate with signal present but no

false alarms included. This new rate has the distribution of the sum of two independ-

ent normal variables and is therefore

f.p, (l-p,) f.p, (1-p))
F(r) = N(frpourpl. 2 ¢ rlﬁ L) w22

where

P = PD per transmitted pulse.

The two rate density functions (signal atsent and signal present) are illustrated in
Fig., 4.2,

A threshold rate T, mMay now be set using the Neyman-Pearson procedure in the
rate domain., An overall false alarm probability PF A is selected for a specified obser-
vation interval T, Since the standard deviations of the density functions Po(r) and Pl(r)

~
become narrowesr with increasing T , the rate threshold Top decreases with increasing

T for a fixed overall gF A With a given signal-to-noise ratio, then, the overall g

detection probability ﬁD will increase with T . The detection-information procedure
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Fig. 4.2 Probability Density Functions for Indicator Pulse
Rate, with Signal Absent and Signal Present
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is illustrated numeridally in Section 6. 2,2, using the actual parameters of an advanced
pulse compression radar, It was found to be substantiall; more efficient than the con-
ventional approach in which the Neyman-Pearson procedure is applied in the amplitude
domain, Some reflection on the nature of the difference between the two approaches
will indicate how the improvement occurs. In the detection-information procedure, .
we have disassociated the overall false alarm and detection probabilities from the am-
plitude threshold setting which is optimally set by an independent criterion, It is
readily seen that, under conditions of long observation time T and low overall false

alarm probability P » the normal Neyman-Pearson procedure applied to amplitude

FA
may require ampliiude thresholds which are so high as to be completely unsuited for

low-level signal detection, whereas the detection-information procedure always chooses

a well-compromised threshold,

[EARNAID b rort

2
2

oy

pi L= DR e e S N T

[ e




R . s TSR

SR o B T S G 2 EHTT.
¢o g
5, PARAMETER INFORMATION '
. ' 5.1 Basic Formula . :
In the previous chapters, particularly Chapter 3, the strict applicability of the

concepts of information theory to radar was developed by utilizing well known results
on the size of the compressed signal responses, as illustrated, for example, by N
Fig. 3.5 with the linear detector and Eqs, (3.32) and (3, 33) for the Bessel-function
detector, The basic framework developed previously can be generalized to include
multiple targets with unknown echo amplitudes, range delays and Doppler shifts, The
generalized results not only support the previous conclusions, but they lead to a con-
sideration of information areas in the 1 - ¢ plane as well as the definition of an inter-

3 dependence coefficient between range and Doppler informations, In this section, we
derive the basic formula for parameter information in a multiple-target environment,
The following sections are devoted to simplifications and interpretations of the basic

] formula, We sh:1l use the analytical model and complex notation employed in Fig, 3, 4.
) Let it be assumed that there are N targets, and let

3 X e () Xylees ;xN) 2 (T 0p AL Tordpr Agiessi Tradyn Ay) (5.1)

Le a vector (3N«tuple) representing the range, Doppler and amplitude parameters of
the N targets, 1f the transmitted signal is £(t), then the complex echo voltage is

Ny (t) ? (5. 2)

1 %o ® = ol

il

where jengt
oi
in which the zero subscript represents a true value,

if

V=gl = ny )+t : (5.4)

represents the received noisy signal, where y(t) is noise, then, by the Bayes equality,

we have

‘The average parameter information is therefore

_ [oo] o0 %/v) _ @ )
1 (%7 - [ .mp(x.y)ln%dxdy = [ _ptayin RO/ axay . (5.6)




T T e TN ABSEAES e g b PP e R IR I o

| :5 61 , g
Substituting,
p(x,y) = p(x) ply/x) (5.7) :
and ©
ply) = f_w p(x) ply/x) dx . , (5. 8)

the information becomes

1) %, vy = [ * ply/x)
p » Y) = f p(x)dxf ply/x) In = dy » (5.9)
et ad [ Pl )ply/x! yax!
(e o)

which is entirely in terms of the a priori density function p(x) and the likelihood func-
tion p(y/x). In the analytical work dealing with information, it is most desirable to
investigate the change in information as a consequence of changes in the target con-
figuration and changes in radar waveform. In order to allow for the former considera-

tion, the averaging with respect to p(x) in Eq. (5.9) may be omitted and the formula
becomes

[ S L
-

1(e) -
P (%, %) = f

=00

ply/x) in [ —— P/ ]dy . (5. 10)
f PO IRty /) axt

In terms of the complex radar notation, we have

S5 PN S AT A MRS V€ st A W

PUY/%) = p (vlt) = g{t) - n(t)) = p (w(t) = y - q_(8))
=P luy, 0= L0 -0, 0) 2 pby ) (s
where, (from Eq, (3.20) 1 © 2

; 1 " L, eyl )
\ p(Vx’Y) = (Z"kﬂw.) [ » (5. )
: with

Loy, y®1% = 1200 < n )] = [L@)]? - 2 Re £(6) mit) + | (0)]% (5.13)
.; Thus, Eq, (5.10) becomes

] plv ) '
23 fo's) X,y
: D= [ by, ) m[ % ]dv SR CR 7Y
~© ‘. j:oop(x' )Plv, , y)dx
For the integration
0
f_m Plxt) Blvy ) ax! . (5. 15)
R o RN S SRR SR AR e o = = e e o N
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x! is an arbitrary variable of integration and we have
} vty = Vgl = L0 -, ()
= Vx’ Y(t) + Tlx(t) = Nyt (t) ’ (5. 16)
where x is a given set of parameters throughout the probiem and all averaging is being
done over the ensemble of all possible received waveforms y = {(t) as determined
from the multidimensional Gaussian process y(t) added to the givea T\x(t) . Substituting
Eq. {5.16) into Eq. (5.14) yields
. (2) - " P(Vx' Y)
P [ st n| . e
' P PPl oy mmdxt
-00
First consider ,
1 2 2
& . ~2KT f |vx, Y(t) +11x(t)" Myt (t) |
: -
! Plv, o T =) = e dt
Xy xS Grkgwnyt
; ) (5.18)
) where .
2
[v, () + 0, (t) = m, ()] =
%Y x x! . (5. 19)

va,y(t)lz +2 Re\vi,y(t) (n ()= () )] #]n (8 = @]

For wide-band signals, the center cross-correlation term involves a cosine function

of a wide-band phase-modulation argument as well as a uniformly-distributed phase

R O ¢ Bk B (LD R I Tt ARV A G Welr

due to wide-band noise., After integration with respect to time, this contributes a
negligible value to the total exponent in Eq. (5.18), Thus

1 2 2 2
'mf (va’y(t)‘ +|11x(t)"nx| (t)l ) dt
e )
e

P(Vx,y+nx"nxt Y] ErkI W)

-l fm In. () - n., ©]% at ) (5. 20)
ZkyJ M= x!

'y

n P(vx. y) e

N

and the integration with respect to x' in Eq. (5.17) becomes

.1 P 2
- o 2Ky fm|nx(t)-nxa(t)| dt
, J PRl o )t =l ) / e dax', (5.21)
!
R S — SR .
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5 Substituting this into Eq, (5.17) yields
1 & 2
{e) o) ® 'mf_mlnx(t)'nx' (©)]" at '
oo = - [ Bl Jinl [ e axt | ay
1 2
© - 2Ky f I"x(t) “Nx (t)| “at . (5. 22)
= «1In f p(xt) e -®© dx!
-00
Now,
S 00 o
1 2 1 2 ¥ 2
= fwlnx(t)-nx. W%t == [ (ln (0]~ 2Re n (thn, )+ |n,, 0] at

- -00
S = E+E' -Re ), (5. 23)
» where
; [0 o
E= % f ]1—|x(t:)|Z dt = total echo signal energy (5. 24)
1 2
: Et = [ [qy (t)|© dt = total echo signal energy as a
[ 2 Yo function of dummy variable x! (5. 25)
®
L Xy ot = 1, (t) n,, (t)dt = multiple-target echo
I XX ‘[-oo x x! ambiguity function . (5. 26)

Using the above notation, Eq. (5. 22) can be expressed in the form
E'+E 1
(e) o kj K7 Rexx,x'
Ip (x,%) = - 1nf e e plx') axt (5. 27)
-0

which is a general formula for parameter information that depends only upon

(1} The assumed target situation x

- AR N ARNS LR S R 5

{2) the ratio of total echo signal energy to noise energy per mode

s i

(3) the multiple«target echo-signal ambiguity function X _,
?

(4) the a priori density function p(x').

Sty 4T Y

5.2 Reduced Single-Target Formula

In ordet to a¢quire further insight into Eq, (5.27) and develop it into a more use-~
ful form, the single-target problem will be considered in further detail. Thus the echo
signal is of the form

3

nylth = A §(t - 7) eJm et ) (5. 28)

AR S e -
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where the transmitted signal is
; g(t) - R(t) ejzﬂ’e(t) ejZn'fot ejZn'(bt , (5. 29)
‘ with
! R(t) = envelope modul-tion, having an assumed maximum value
V of unity
o(t) = phase modulation
: f, = carrier frequency.
‘ Then .
. 3 t .
: Re X, . = Re f AA! g*(t- t) gt -1*) e J2m (8! -0t 4
b ]
| el (5. 30)
‘ © j2nfolt-t1)-o(t-r)] j2m (¢ -¢)t j2mf fr-T')
i = Re f AA' Rt -7)R(t-¢!)e e e dt .
: ~00
;
: Letting
] a= 7! -7 (5. 31a)
] B= &' -¢ . (5. 31b)
and then
t-T=1t, dt = att , (5. 32)
it is found that
-j2m (£ a-Br) jana(tt -a)-o(t')] j2mpt!
Re x ., = Rele [ AA'R(t')R(t'-a)e e dt'| . (5.33)
» X Y0
We may write Eq. (5, 33) as
Re X, xt = |XA,A|(“’BHC°5 [Zn(foa-ﬁf) -e] s (5. 34)
where © jen[o(tta)-o(t' )] j2r Bt!
Xa, ar (@0 B) = [ AA! R(t)R(t! - a)e < dtt (5. 35)
-00
and
€ = arg Xy a1 (®B) . (5. 36)

So Eg. (5.27) becomes

E+E! 1
) (a, B)|cosfen (f a-PBr)-€
I;Se)("’y) = - hfm e ¥ o W le,A' |coslen (£, )
-®

p(x') dx* , (5.37)
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where it is understood that x represents (t,¢, A) and x! represents (t',¢',A'). If we
integrate, with respect to a, over one r-f cysle, then

@ -E' 1E - 'x |(°" ‘3)]
Il()e)(x’y) = - 1n f e kg I, _.‘A.‘.'R‘%___ p(x' )dx s (5. 38)
-00

where I is the modified Bessel function defined by
1
a+ ZIO zcos(Zn-foo.' +7v)
1) = £, | . e da! . (5. 29)
o2

[o}

Eq. (5.38) is the desired single-target version,

5.3 Examples
5.3.1 No-Signal Case

1t is assumed in this single-target example that A= E = 0, although it
is not known that this is so prior to the measurement, Then Eq, (5. 38) becomes

El
xff’ (x,¥) = = In fw e p(x') dx! . (5. 40)
~00

The a priori density function p(x') is taken as the uniform distribution:

1

1) = Do
P = oy A B D) o (B4l
where
A £STETB (5. 42a)
by < b < bp (5. 42b)
0 < Ec EB . (5. 42c)
Then ( Eg . _1%'_
e) _ 1 g
Ip (x,¥)= - In £ f e dE!
0 Ep
=1nEB-1nk:7(1-e“k7> . (5. 43)
Assuming that
EB >> kﬂ ’ (50 44)

o, ¢ S -

o
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then —
E

(e) - B
Ip (x,Y) = In —E—:]——

. (5. 45)

We may interpret this equation as follows, Before the measurement, the echo energy

was expected to fall, with equal likelihood, between zero and the value EB' and the
range delay and Doppler shift were expected to fall uniformly in the intervals [-r A TB
and [¢A’ ¢B] » respectively, Since, in fact, the echo energy was zero, we cannot
have obtained any information about v or ¢ . However, the energy value of zero was.
a possible a priori alternative within the expected energy interval, But the presence
of noise prohibits us from exactly determining that the energy was truly zero, In
fact, the final uncertainty in the measurement of energy is the uncertainty of the noise
energy alone, which is characterized by a standard deviation of o = k7 . Eq. (5.45)
thus tells us that the measurement has permitted us to divide the a priori region of
energy uncertainty [0, EB] into N = @ intervals, each of size k 7, and to declare
(on the average) that the energy was in the lowest interval E® 0,
obtained is that given by Eq. (5.45).

The information so

In this example, further support is also advanced
for the choice of §E = k{ as a quantization level for energy.,

5.3,2 No A Priori Uncertainty

Here we assume that the true target parameters are known prior to
the measurement, That is, symbolically,

plx!) = 5 (x! - x) (5. 46)

Eq, (5. 27) is therefore
E!' +E

1
i T x5 Re
Il(’e)(x’m = -1n fm e 7 e J xx’ x! s(xl ..x) dxt . (5. 47)
-0

Since, from Eq. (5.26), we have

Xg,x = 2E , (5. 48)

then Eq. (5.47) evaluates to

i

‘1;3)(::,3{) =-lnl =0 . (5. 49)

as would be expected.

We may also consider a cage regarding partial knowledge of the parameters,

a priori, Suppose that, in the single-target case, we know range and Doppler but not
echo energy, Then

S
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p{x') = 6(r! - 1) 5(d* - ¢) p(E)
where

Then Eq, (5.38) becomes

I

e T ) b | GERRTG b REE YO

(5. £0)
. (5. 51)

0,0
. EA";’:'; d p(E') dE' . (5.52)

Assume, for illustration, that the signal pulse envelope {(of duration P) is rectangular

Ep _E'+E
1,9 = - in [ e K7
p E
A
so that
2
Et = .A:'.z..?_

Then, using
p(A!) = p(E!) .%: =E.i'_%_.

Eq, (5,52) becomes

. (5. 53)

’ (5. 54)

by (ms” )(r5)

A2 a2
D ZEIIEY (W)dA' . (5.55)

The integral is now recognized as the integral of a Rice distribution and it evaluates to

approximately unity if the interval [A A
function, Thus, we have

E_-E
(e)M”] B "A
IP(’) (E? )

Ap ] includes most of the area under the density

’ (5. 56)

which should be compared with the simpler example leading to Eq, (5.45). It is

interesting to note that

2
N = 1:7 11:713' (5.57)
quantization levels in the energy domain suggests
[T A
N o» $E o _Ime (5. 58)
'Y Jk-‘7/P
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P ) v’a'w“fﬁﬁiﬁ

auantization levels in the rms-amplitude domain, This implies thai rrs amplitude is
"naturally® quantized into increments of

oy =,,’_1§,«Z , (5. 59)

which is the rms noise at the output of a filter of bandwidth 1/P cps, This amount of
rms noise (determined above for arbitrary phase modulation and rectangular amplitude

modulation) is equal to that appearing at the output of the matched filter for a rectan-
gular CW signal pulse,

5.3.3. ‘The Case of High Signal-to-Noise Ratio

We shall consider the case of large values of A and A!', and shall also
restrict the analysis to a small neighborhood of the (t,4) point in the T! -¢' plane

which is at the peak value of the integrand in Eq, (5.38). (This point is equivalent to

the origin in the a - B plane,) We can then use the asymptotic form for the modified
Bessel function, which is

B s LS N

1(2) g e &* z >>1 . (5. 60)
2z
Then Eq. (5. 38) becomes
E'+E s, ar (28]
fo0]) -
= -ln [ e KT . - e Kd plx!)dx! . (5. 61)
P ~0 ﬁ: 17, A'S, B
We define
x(@:B) = m Xpnr (@B (5. 62a)
© .
= [ ult) ue-a) 7P ar , (5. 62b)
-00
where
u(t) = R(t)ejzﬁe(t) = complex transmitted modulation , (5. 63)
Near the point {a = 0, B = 0), and for A' s A, we can represent X(q, ) by a truncated
Maclaurin gseries

L X(@,B) = X(0,0) +(a 2 +B 2 X(0,00+ 3 (2 2 + 8 Fr )P (0,00 (5. 69)

Evaluationn’. 57 of the partial derivatives and use of the spectrum

00 . .

Ul =7 [u(t)] = f ult) e R , (5. 65)

-00 s
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leads to the result:
X{a, B) = _jﬁ. (1 al- + % B2 +TT ap) , (5. 66)
where
2 2 )ZAZ o] %
2 8 Jj'fr_f v £ v at (5. 67)
- Q0
AN Cl i S A T (5. 68)
S -—Sp— [ _weu :
2,2 o oo .
w o Lnla [ [ weume J2r £t ggqy (5. 69a)
-00 =00
. 2 o
- o J2mA’ ) u®(t) t w () at . (5. 69b)

2E -00

In a peak-power-limited radar transmitter, rectangular amplitude modulation is gener-
ally employed to obtain maximum transmitted energy. If we assume this situation, then
the term I is real-valued, We now substitute Eq, (5. 66) into Eq. (5.61), while making
the assumption that, for the denominator of the integrand only, we can allow the approx-
imation

Xy arioB) = AAY X(o,p)m ZEL (5.70)

within the neighborhood of (a = 0, p = 0) that we are considering, This is motivated by
the observation that the exponential term of the integrand drops rapidly downward (as

a functibn of a and B) during which the denominator is a slowly varying function.

Thus Eq. (5. 61) becomes

E!' +E 2EA! ;Z'
5 . 1-_ -5
i "‘ET( a t g 2 ap)p(x' axt

" 4rEA! (5. 71)

We shall concentrate our attention on the range and Doppler information and will,

1%, v) s -1n fm e
P -0

accordingly, set A = A' while understanding hereafter that the integration is only over

! and ¢'. Eq. (5. 71) then becomes

2 2, 2a2
00 - (70" +t" - 2 aB)
T
-Q0 ZWP (50 72)

Letting

p(x') = plr* )plo')
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where ~
P(T') = U(TAD TB) 3 P((b') = U(¢A, ¢B) H (5' 74)

£q. (5.72) may be written as

(rn -7 Mo =d,)
Il()e)(x.Y)=ln TR ~TANPB " YA

. (5. 75)
'}2' (p £ a2+pt?p2- 20H ap)
e

[

dx!
2wp

.

The numerator is the a priori surveillance area in the t = ¢ {or a ~ ) plane, Fora

fixed p, the width of the volume determined by the integration in the denominator may
be measured in terms of the equation

p?—uz-Zpr'nﬁ-l-p:zBZ:l , (5. 76)

since this ellipse describes the locus of points at which the integrand is e'l/z times
its maximum valde, The area of this ellipse 1357

a = L (5. 77a)

A?ZT:Ez
frO’T O’f

- . (5. 77b)
1. p%

whee
. 1
a =

(5. 78)

vd

4

G‘b = (5.79)
,"p t
E:4
D = et . (5. 80)
THT

The information is therefore seen to be related to the logarithm of the ratio of the a
ptiori surveillance area to an equivalent a posteriori area given by Eq. (5.77b)., This
result is compatrable to an expression such as Eq, (3. 51) or (3,55a), except for the
additional term involving D, which we shall call the interdependence coefficient, For

given values of 'o'T and 64’ s maximum information is obtained when D = 0,
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Since

o A2
T o= ZdanAl fmu*(t)tu'(t) dt

(5. 81)
2E o
then the Schwarz inequality
*
[ [£1) gtv) at]? < [£@) ) at, [&7®) gt) at (5. 82)
with
f(t) = —2XA y) ¢ (5. 83)
JZE
jA
g(t) = - 2= wi () (5. 84)
4 an
shows that
18| < R (5. 85)
Therefore, we have
|Ip| <1 (5. 86)
In terms of D, the ellipse in Eq. (5.76) is
a2.zpat poapr2= (5. 87)
where a! and f! are normalized variables given by
al = "p?a =-63- {5, 88)
prafoit b=t . (5. 89)
T
In matrix form, the ellipse in Bq. (5. 87) is
1 =D af
[n‘ B'] o 1| |P]=t . (5. 90)
The eigenvalues of the square matrix are the roots of the characteristic equation
1 « A *D
=1 ’ (5. 91)
D 1 « )
7

A
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which are

The lengths of the semi-major and semi-minor axes are therefore

—_ and —

L) )

iy

3
BT, AT A

(5. 92a)

(5. 92b)

(5. 93)

, £ D = 0, then the ellipse becomes a circle and we may say that there is no interdepend-

ence between range and Doppler information, This ozcurs, for example, if we have

rectangular amplitude modulation and no phase modula.tion, since then

- P/2
= A | f / t R(t) R*(t) = O
2E -p/2

(5. 94)

In another practical case, suppose that rectangular amplitude modulation is used with

linear frequency modulation over a large time-bandwidth product PB, Then

P/2 5 -j2me(t) jeme(t),

g
|

(5 gl L f A% e t (j2r e a(t) )dt
?E p/e
2 P2 .
= f2r)” I A%t h () at (5. 95)
2K -P/2
Letting
£= 8= 5 t, -t (5. 96)
then
2 P/2 2 2
T = r) f —P—A B ?qt = @ 3BP (5.97)
2E 7 /2
Also,
2 p/2 2.2
& - f2n) ) / At at = "3P (5. 98)
2E " ps2
and /
2 B/2 2.2
‘f"Z' . (2w) f €45 = rr3B (5. 99)
2E - B/2
P S G RN T ST O T s K500 TG i T
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. (5. 100)
iz

The eigenvalues are therefore 0 and 2, and the ellipse has elongated to an infinite
length with the interdependence coefficient reaching its maximum value., Since the
semi-minor axis length is equal to -—1— and the ellipse (always) intersects all four axes

at +1, then the ellipse is readily deéuced to be at an angle of 45° with respect to the
coordinate a! - B! axes,
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6. APPLICATION OF RESULTS

R

6.1 Description of an Existing Advanced FM Radar System

In this chapter, a practical radar example is considered to illustrate the applica-
tion of some of the analytical results obtained previously, We shall deal with an ad-
vanced type of radar system having a high pulse-compression ratio, and demonstrate
quantitatively how its performance may be improved by rneans of the derived concepts,
Such a radar is the linear-FM (chirp-type) pulse compression system described in
reference 58, which has one of the highest pulse compression ratios implemented to
date in an operational radar, namely 8,000, This *range-channel® system achieves a
nominal range resolution of 123 ft, and transmits sufficient energy on a single pulse to
obtaii a 15 db signal-to-noise ratio on a radar cross section of 0,1 mz at a range of
approximately 1000 nautical miles, Although this radar represents an advanced state-
of-the-art implementation, it will be shcwn that:

(a) By using the proposed nonlincar processing, the range resolution can be
improved by a factor in the order offp , where p is defined in Eq, (3.29).

(b) The detection~information criterion for setting the detection threshold
leads to a procedure in which detection probability increases with time for a constant

procedure is substantially more efficient than a conventional Neyman-Pearson amplitude
procedure,

The radar has the following parameters:

Peak power 2,5 Mw

Pulse duration, P 2000 microseconds

Pulse repetition frequency, fr 30 pps (period, T, = 33 msec)

Beamwidth 2,2 degrees

Signal bandwidth, B 4 Mc linear frequency deviation
centered at fo = 427 Mc

Range window 16,4 nm

The system concept is readily explained from the simple block diagram in Fig,
6.1, The EXCITEP. generates a linear FM ramp at the radar' s pulse repetition fre-
quency, This transmitted frequency is labeled FR in Fig. 6.2. The echo pulses* E
arrive at a range delay To after signal transmission and, at that time, a range-track-
ing local-oscillator F'M ramp is generated by the EXCITER, which is called the delayed

Only one target echo ramp is shown in Fig, $.2 for illustration but there is a.ctt?ally
one for each target present,
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Fig. 6.1  Simplified Block Diagram of an Advanced FM Radar
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coherent frequency ramp DCFR. The DCFR is heterodyned with the echo signal and
the difference-frequency signal is passed through a real-time spectrum analyzer
(Coherent Memory Filter) and displayed on an oscilloscope, If the DCFR and the echo
E exactly overlap in time (At = 0), the difference-frequency signal consists of a con-
stant-frequency pulse of duration P with a frequency of

fa = §p - fp

where

i~ £ offset frequency

b

)

Doppler shift frequency.

13

Since the pulse width is equal to P, the spectrum analysis can determine fD with a
resolution in the order of -P— = 500 cps., In fact, we can thmk of the spectrum analyzer
as a bank of contiguous filters, each having a bandwidth of 'P_ cps which is matched to
; the duration of the difference~frequency pulse, The ratio of peaked mean-square sig-
nal to mean-square noise at the spectrum analyzer output is calculated from the
matched-filter output ratio E/No » where E is input signal energy and N_ is noise

. power spectral density, If srm s is the rms value of the difference-frequency sinu-
soidal pulse, then

S AR e A

2 2
E _ srmsP_‘= srms 6.1
N "N 1 ! &
[o] (o] NO.-F

which shows that the effective noise bandwidth of the radar is 1/P cps.

If the DCFR does not exactly overlap the echo E in time, then the difference fre-

ONL AT RS Aty R 7 SRR T

quency is
fg = fip t oo - £y (6. 2)
where
a = -g- = ramp slope = 2000 cps/microsecond, (6. 3)
For
At << P ’ (60 4)
" the difference~frequency pulse has a duration of approximately P, So the spectrum

analysis sgill resolves frequencies in the order of 1/P cps and therefore range-delay
resolution 5,;;_3 obtained such that
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; aAr = -II,- ’ (6.5) E
s or i
: AT = —al‘,P" = 'IB' = 0,25 microsecond . (6. 6)

Within the radar! s range window of 16, 4 nm, there are about 810 range resolution

cells, which also represents the number of independent opportunities for a false alarm
for each radar pulse, A characteristic property of all linear-FM systems is that there
is a severe interdependence (or ambiguity) between range and Doppler information,
This interdependence was demonstrated by the defined interdependence coefficient D
that was shown to have the maximum value of unity for linear FM, The interdepend-
ence is clearly seen in the radar under consideration since both range and Doppler
effects produce changes in the same measured variable £,, In fact, the interdependence
is so extreme that, for a number of closely-spaced targets flying at nearly the same
velocities, the fd frequency axis is used entirely as a relative range axis, (The 500 cps
Doppler resolution corresponds to a coarse 578 ft/sec radial velocity resolution, while
the 0, 25 microsecond range resolution corresponds to a fine range resolution of 123 ft, )

6.2 Design of an Optimum Radar System

P

6. 2.1 Resolution Improvement

b A linea® matched-filter radar followed by a linear envelope detector
: produces a voltage propo¥tional to the correlation surface:

: © .
; ITto = |f tg” -m)e 2O |a y (6T
-0
where
g(t) = the transmitted signal

¢ (t) A, £t - To) € 32 dot + v(t) = noisy received echo,

The width of this surface was seen to be 1/B in the T direction and 1/P in the ¢ direction,
where B and P are the signal bandwidth and duration, respectively,

Since the a %osteriori probability density function p(r,$/t ) was found to be pro-
portional to 1, ( 53 T (t,$)|), range and Doppler resolutions in the order of the width
of r"r,q)/g) can be obtained by following the linear detector of the preceding linear-
ma‘cched-filter\‘implementation by a nonlinear element having the characteristic of the

modified Bessel function 1 _(x). This would then yield resolutions of and 1
o
BJ7 Pl
for T and ¢ respectively, where
T U N N, L RO 2 SSESWPSER - * mw
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i . 2E _ 2 X echo signal energy
: P ® X5 T Toise powe‘rgspectraig density . (6.8)
‘ Ablock diagram of such a system is presented in Fig, 6,3 where a single channel is
illustrated, At the output of the amplifier G, a voltage x(t) occurs having a value of
g|T (t)] where g is adjustable by means of the amplifier gain, G,
We wish to implement a final detected signal So(t) that is proportional to
- 1
k) =1, (g [T . (69
From Eq. (6, 7) it is seen that the maximum value of |T'(t)| is the 1 iatched value
: |I’('r°, 4,0)] n 2E (6. 10)
where the approximation stems from the conventional neglect of the noise term y(t),
which is valid for high signal«to-noise ratios, By defining
i
%
§

I' (t) 2 apye T'(1) (6. 1)

Eq. (6. 9) can be written as

pit) = I [T ©))) ' (6.12)

where

! (t)yyane @ 1 . . (6.13)

g

The I o(x) characteristic was shown in Fig, 3,7. We may set up the system optimally
4 for a specific signal-to-noise ratio p by applying such a calibration signal at the re-

‘ ceiver input and adjusting the gain G so that the peak response corresponds to X" P
on the input (abscissa) axis of the implemented I o (%) characteristic. When this adjust-
ment has been made, the noise power level is at a factor of p below the peak power

of the signal response (or p /2 below the rms-squared value at peak response), and
therefotre the noise powez is always concentrated below the knee of the Io(x) curve,

In the practical case, the input signal-to-noise ratio may cover a range of possible
values, Now suppose that we have optimally set the gain G for a particular signal-to-
noise ratio p . - If a signal voltage twice as large as expected then arrives, |T(t)| in-

creases by a factor of 2, as indicated by an increase in A of Eq, (6. 7)s For the same
gain G previously used, the excursion of x in Fig, 3.7 increases by a factor of 2, How-
ever, the increase in input voltage by a factor of 2 implies an increase in input p by

a factor of 4 so that, optimally, the x-excursion should have increased by a factor of

4, Thus the systéem is gain-matched only for p = p o* For illustration, suppose that

.7.
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the input signal-to-noise ratio may vary such that

, ]
|

4<p< 25 (6db to 14db) . (6. 14)

As a compromise, we may set our gain G so that it is optimum for an input signal of

2E
p. = 10db = 10 = 0 (6. 15)
[o] 'Ei- . o

If the signal with p = 6db should occur, it is a factor of 4 db = 1,58 less in voltage and
its peak response will only reach 10/1,58 = 6.33 on the x-axis instead of Py = 10, On
the other hand, if a signal with p = 14db should enter, its peak response will reach
1,58 x 10 = 15,8 on the x~axis, Fig, 6,4 shows a comparison of the normalized res-
ponse Io(p|1'" (t)|)/ Io(p) obtained in the above situations, where it is always assumed
that the nonlinear system is set for Po = 10; i, e,, we are implementing

mit) = I, {p, 1T (0] . (6. 16)
where

I ' (1) = oy Tt
- )

’ (6.17)

Lo in which Eo is a constant while I'{t) changes proportionally with input voltage. Fig.

6. 4(a) illustrates a typical linear response and Fig, 6.4(b) shows the gain-matched

‘ nonlinear response for p = Po = 10, The significance of the improvement is best
illustrated by observing that the lateral (range) jitter of the peak in Fig. 6.4(a) is
characterized by a standard deviation of 1/8 J-p_; in range delay or a/B Jp_o' =1/ pr::
in frequency, as indicated on the figure, where it is assumed that Po i the actual input
value of p, Thus the jitter (precision) is less than the resolution (granularity or accur-
acy). On the other hand, the peak width (granularity) in Fig, 6.4(b) is comparable to
the lateral jitter (precision), The situation is analogous to observing an ammeter
reading in which the thickness of the needle is equivalent to our resolution width, It

is most desirable to have the needle width comparable to the needle jitter (as in

Fig, 6,4(b)) rather than much larger (as in Fig. 6.4(a)) or much smaller, Likewise,
the granularity of the scale on which we are reading should have its smallest division
comparable to the jitter width (and therefore the needle width also)., In Fig. 6.4(c),

AP MU I Bl TR s AT S < | R e €,

the response is given for an input p of 6 db while the receiver is set for Po = 10db,
Here the noise becomes more prominant since the gain G is too high, Also, the width

of the peak would be narrower than is theoretically justified so that the lateral jitter

would exceed the response width, Fig. 4.4(d) shows the response for p = 14db, which
is higher than the set Po = 10, Here the p2ak width is not as narrow as it should be
and some resolution is sacrificed, In most applications, the Bessel-function detector
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may be used in parallel with a standard linear detector and then employed for improved
resolution on a target whose signal-to-ncise ratio can be judged from the linear dis-
play. Thus the gain G of the nonlinear system may be properly adjusted for near-

optimum performance,

0
An alternative to the above implementation is to replace the linear detector in

Fig. 6,3 with a square-law detector, Then we are implementing an output signal So(t)
that is proportional to

w(t) = I (p I (8)]2) , (6.18)

where

IP (t) 'ma,x =1
and the gain G is set so that an input calibration signal with signal-to-noise parameter
Po will give a maximum excursion of Xy = P 2 « Now, however, an increase in input
voh.age by a factor of 2 wili \.hange. B:e x-excgr::.gn‘b)_r af factor of 4 and thegeforethe . .
~Kéw maximum valde x xM * Wwill be p“ , as it should, Therefore, th1s method employing
a square-law detector always remains gain-matched, although we have altered the

response shape Lecause of the presence of |I" (t) |2 rather than [T (t)] .

v e
St ST AR AT

6.2.2, Improvement in Detection Capability by Employment of the Detection-
Information Procedure

In the radar under consideration, for each transmitted pulse there are
n = 810 independent opportunities for a noise threshold crossing and one opportunity
for a threshold crossing due to signal (with a single target), We shall assume that a
threshold test is made for each such transmitted radar pulse, The detection probability
Pp may be calculated from curves or tables of the Rice distribution for any assumed

s:.gnal-to-no:.se ratio, 43,34 The false alarm probability is expressible as
P, =1-1B, )0 x810m, , for 610PL, <<1 (6.19)
FA A FA? FA ' *
: where

Ppy = probability that at least one noise sample excceds the

A R

threshold out of 810 samples, where each sample has
. an individual probability (Rayleigh-distributed) P!
of crossing the threshold,

FA

A0 B

We may plot I vs, threshold-to«rms noise level RT/UN for various values of signal-to-
noise ratio, as shown in Fig. 6,5,

As an example of the application of the above results, we shall assume that the g
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: . threshold employed is 4,5, This yields maximum information for S/N ratios from at
least 6 db to 12 db, although the amount of information decreases with decreasing S/N
values, The false~alarm probability for a single radar pulse is then

- v
Pr, = 810 PL, = 0,0405 , (6. 20)

from the Rayleigh distribution, We now accept a ¥normal" false alarm rate based on
this probability, We postulate a detection procedure in which a single output pulse is
generated if there are one or more threshold crossings per radar pul:e, If there is

ne signal present, the probability ¢¥ getting such an output pulse is PF A 0, 0405,

This may be considered to be a stochastic process in which the probability of some event
occurring is p 0 = 0,0405, Then the probability of exactly k such events in T trials is

given by the binomial distribution

) ~
. n ~ .
: . P - <k> by (-pg . (62

. N which is approximately equal to the normal diatribution:* N(fip o ﬁpo - po) ) £or5 6
‘%p o (1 »p,) 2 3. In the radar under consideration, the pulse repetition frequency is
£, = 30 pps 60 the normality approximation will hold after a time duration of about

~ 3
n o= -p;-!r-_—f)—o-)- = 77 pulses (6. 22)

or
~

I.E. A ;;sses = 2,6 seconds . (6. 23)

np,  Apyll-p,)
~— s ——xm——/. The dura-

tion T will be taken as an integral number of pul epregetition pex"]iods, so the density
function may be expressed as being N(f p_., —1'—%(-1-'-29-)——). Here it is seen that

the mean value of rate i# constant and the variance é%creases proportionally with time

The density function for output pulse rate k/ T is N

duration, The mean value of false-alarm rate can be determined precisely from stand-

by observations on the radar, When a signal appears, the data rate increases and es-
sentially becomes equal to the sum of (a) the false alarm rate and (b) the rate with signal
present but no falde alarms included, To a good approximation, this new rate with

signal preseat has the distribution of the sum of two independent normal variables and
. £, P, (1-p,) fp{-p) . -
is N{f, p, +£, Py E + o » where p;, = P is the probability

R AL SR HRG AUT RS D

T

Even when the normal approximation does not hold, however, the mean and
variance are still given by np_ and np_(1-p ), respectively,

VRNV
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’”‘ that a signal-plus-noise sample exceeds the threshold, The two rate density functions
* (signal absent and signal present) were illustrated in Fig, 4.2,

” We may apply the procedure by specifying some overall false-alarm probability,

. say PF A S 0, 01, after T seconds of observation time, In the absence of signal, the

density function for rate is (approximate for T < 2,6 seconds)

: f.p,{1-p,)

S 11

f N(fr Po ’ '3"‘_9%"_—'2—' = N (10 2150 '1‘67 ) ’ (60 24)

i where g
'Fr' = 30 pulses per second

: P, = 0.0405 = probability of a false alarm for one radar pulse

. (810 noise samples), .
,: The arhplitiudé threshold is assumed to be set at 4,5, with respect to rms noise, For

i an overall false alarm probability of Pn = 0.0, the data-rate threshold must be set

1

% at 2, 33 standard deviations above the mean value. This data-rate threshold T

: . tabulated in Table 6, 1:

g: TABLE 6,1 DATA-RATE THRESHOLD FOR B, = 0,01

% ¥ (seconds) rp (output pulses per second)

4

£ 1 3,730

L2

£ 2 2, 880

3 3 2,707

% 4 2,474

§ 5 2,340

5; 6 2,264

£ 7 2,185

3 8 2,122

: 9 2,033

10 2,012

As an example, we shall assume the sudden appearance of a signal with an rms signal-
to-noise ratio of S/N = 6 db, With the chosen amplitude threshold of 4, 5, the prob -
ability of a single sample of signal-plus-noise crossing the amplitude threshold is

P; & 0,07, The probability density function for rate therefore changes to

£, polt-p)) £, p01 -p1)> i

3.1

~
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Table 6.2 lists the difference between the mean value and the threshold rate T in
standard-deviation units, and also the corresponding overall detection probability:

Table 6.2 DETECTION PROBABILITY FOR DETECTION-
TINFORMATION PROCEDURE, S

T
e o i oM
b g e R I R TR B PR A

, /N =6db
~ Mean Value Minus r P

; T (seconds) (standard deviation un'iEs) D

i 2 0, 349 0, 64

; 4 0. 955 0, 83

9 5 1.235 0. 89

X 6 1.465 0.93

7 1. 695 0. 96

H 9 2,190 0, 99

~, 10 2, 342 0. 99

i‘ For comparison, we may consider the Neyman-Pearson approach with the same
radar, Again we shall assume an overall false-alarm probability of 0, 0l. After T

4 ~N

2 seconds, there are a total of 810 £rT independent noise samples which can cross the

amplitude threshold, The overall probability of a false alarm is

~< ~ 810 £ T ~

e - - . = =

£ PF‘A 21l pFA) b 4 24,300 T PI'FA 0,01 ’ (6. 26)

3 where

3 Pi" A" probablility that a single noise sample exceeds the amplitude

threshold,

The single-sample false-alarm probabilities are tabulated in Table 6. 3 with the required
thresholds:

Table 6,3 S%NQL&~§AM2LE FALSE ALARM PROBABILITIES

Era ESHO R NE -PE

X

PROCEDURE (overall ﬁF A = 0.01)
T (seconds) Pra Threshold, Ry/0y

2 2.06 x 1077 5,55

3 1,37 x1077 5. 63

4 1,03 x 1077 5, 67

5 8,23 x1078 5.71

6 6. 86 x 10" 8 5. 74

fs 7 5,88 x 1078 5,76
= 8 5,15 x 108 5.79
* 9 4,58 x 1078 5, 82
10 4, 12x10"8 5, 84

!
,
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For the listed thresholds, the single-sample detection probability P}, with S/N = 6db
ranges from 0, 005 to 0, 002 (using the Rice distribution)as T varies from 2 seconds
to 10 seconds, The overall probability of detection is given by

N £ T

P, = 1-(1.pb)r (6. 27)

and is tabulated in Table 6. 4:

Table 6.4 - DETECTION PROBABILITY FOR NEYMAN-PEARSON
METHOD, 5/N = 6 db

~ ’ ~
T (seconds) i LT o
2 0, 0050 60 0. 26
3 0. 0042 90 0, 32
4 0. 0038 120 0, 38
5 0, 0033 150 0,40
6 0, 0030 180 0,44
7 0. 0028 210 0,45
8 0. 0025 240 0,46
9 0, 0022 270 0.46
10 ¢, 0020 300 0,46

Comparative results for the two procedures are plotted in Fig, 6. 6. The higher detec-
tion efficiency of the detectionsinformation procedure is attributed to its initial opti-
mization of the amplitude threshold independent of the detection and false alarm prob-
abilitied, In the Neyman-Pearson amplitude approach, however, the amplitude threshold
determines the false alarm probability, In the cited example, the particular overall
false alarm probability that was set required an amplitude threshold that was rather

high and relatively inefficient for detecting low-level signals such as the signal assumed
at S/ N = 64db,

In addition to the greater efficiency of the detection-information approach, there
are no "false alarms® in the sense understood in the Neyman-Pearson amplitude
approach, That is, in the Neyman-Pearson amplitude method a false alarm is con-
sidered to occur whenever noise alone crosses the amplitude threshold, However, in
the detection«information procedure, a certain standby threshold-crossing rate is
accepted as normal, An alarm occurs only when the rate increases "significantly”,
Just how much of a rate inctease is considered significant depends upon the confidence
we wish to achieve in avoiding a “false alarm type of mistake",
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7. CONCLUSION

7.1 General Results

By employing a strict information-theory approach to radar, it has been possible
to develop a new view of radar signal processing leading to a substantial insight into
"ideal" matched-filter receivers, This generalized viewpoint has yielded a number
of significant results, as listed in Chapter 1, which include a method of improving radar
resolution by means of a nonlinear Bessel-function envelope detector and a new radar
detection philosophy based upon a defined "detection information® and a data-rate
threshold, In an illustrative example dealing with an existing advanced FM radar, the

new detection procedure was shown to be superior to a conventional Neyman -Pearson
procedure applied to amplitude,

Of a more basic nature, theory and examples have been presented to show that
the information obtained by a radar is directly related to the input physical entropy of
the receiver, with this physical entropy being synonymous with signal-to-noise energy
ratio (SNER), This result implies that the parameter information has the character of
a physical entity rather than only an arbitrary measure, Relations were also developed
which clarify the role of the SNER in improving radar detection and in improving the
measurement #2eliability® of the radar,

A specific formula for parameter information was also derived, in terms of a
multiple-target echo ambigulty function, which may be used to evaluate the variation
of the information with changes in the radar waveform or the target environment,
Analysis of the formula for high signal-to-noise ratios has lead to the definition of an
explicit interdependence coefficlent between range and Doppler information,

A new reptesentation and treatment of time-limited or bandwidth-limited white
noise was developed which was found to be of considerable use in the information-theory
approach to radar analysis, This representation in terms of modes {or degrees of
freedom) should also be found useful in other noise problems,

7.2 Further Work

Considerable further work may be done along the lines pursued in this dissertation.
Additional theory and examples to substantiate the physical nature of parameter infor-
mation would be desirable, and possibly an experimental "transducer® to convert such
information into useful work,

A major problem area in current radar design deals with waveform analysis and
synthesis, It is suggested that a useful tool in such problems would be the evaluation
of the expected parameter information for specific assumed target distributions, - _
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v ' This would appear to be a valuable adjunct to the present practice of studying the am-
biguity function of the waveform, In particular, it yields a single number as a per-
formance measutre in a target situation that may be quite complex,

G ]
o AR R N

SPHPTRT AR,

S

It was shown, for the linear receiver, that the parameter information does not
exceed the input entropy, In the case of the nonlinear receiver, this condition was

postulated (Eq., 3, 66). A proof or demonstration of this would be desirable for the
nonlinear case,

RIS MR

PR

The existence of a positional type of information, and its relation to the form of
Shannon’ 8 information, as in Eq, (3.116), opens the door to a more general theory of
communication in which both positional and amplitude information are communicated

over a channel, It would be worthwhile to explore this broader view of a communica-
tion link, '

The improvement in resolution by means of a Bessel-function envelope detector,
and the new radar detection procedure based upon detection information, both appear to
be valuabie conitributions to current radar nractice and should lead to e_££e§tive, yet .
simple, means of improving radar performance, It is recommended that these tech- ‘

niques be implemented and their operational performance compared to that of conven-
tional practice,
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Appendix A, Review of Complex Notation

Assume that a general real-valued bandpass siznal voltage is
v(t) = R(t) cos (2r fct + 2n+t) ) ' (A-1)

where

£, = carrier frequency

R{t) = instantaneous amplitude
2w 6(t) = instantaneous phase,

Its complex representation is given by

jenf t j2welt) ji2n £t

E(t) = %(t) e € = Rt)e e R {A-2)

which has the prcperties that

(a). x(t) = low-pass eguivalent signal representing instantaneous
sumplitude and phase modulation

(b), Ref{t) = real physical signal
(¢)e ()| = R(t) = instantaneous envelope of physical signal

(@ £ = 280, for£>0,

2 0 s forf< 0,

where (A) denctes the Fourier transform,

@
“E
i

LSRR

caomee




e n v e cm—— ST BT SRR -

0
[
-

el R NS
IR Ol PN S s

Appendix B, Entropy Increase Due to Mixing

If all of the energy E were added uniformly, the system temperature would rise
from J to.J +AJ . The temperature J  +AJ is also the temperature to which
the system would settle after the energy E, once added to subvclume V(xo). subse-
quently diffused adiabatically throughout the entire volume, During such a-diffusion

N s

" process, the increase in eystem entropy is
: I, tAT Iy + &7
1 ¥ w dJ
i = 1 Ll et — + — — B-l
: 68 = C w( q)f:7 ~ cvqu = (B-1)
: ‘Yo o+qAd
, + A7
I3 Ag w Ag w 7O
T = i - —_ ~=) + —_ T ToAT] °
valn( +7;-) CV 3 In(l + o) qu ln(ﬂo g 7)
: But
i Jo AT Ad J
g 1n o tIn(l+ 20) c1n 1+ 189 B-2
; (“a/:"rm ( 70 ( .70 ) ] ( )
fg 80 that
g Ad w Ad
: S2C whn{(l+2%).Cc X 1n(1+322
?, 3 v (_30) vg ‘70)
- = A3 - aS B
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